Aramballi J. Savyasachi, Oxana Kotova, Ena T. Luis, Amy D. Lynes, Shaun Mills, Sandra A. Bright, Gavin J. McManus, Matthias E. Möbius, D. Clive Williams, Robert Pal, John J. Boland, Thorfinnur Gunnlaugsson
{"title":"通过氨基酸基苯-1,3,5-三甲酰胺共轭物的形态切换和图案化控制自组装途径","authors":"Aramballi J. Savyasachi, Oxana Kotova, Ena T. Luis, Amy D. Lynes, Shaun Mills, Sandra A. Bright, Gavin J. McManus, Matthias E. Möbius, D. Clive Williams, Robert Pal, John J. Boland, Thorfinnur Gunnlaugsson","doi":"10.1016/j.chempr.2024.09.020","DOIUrl":null,"url":null,"abstract":"Small structural changes to benzene-1,3,5-tricarboxamide (BTA) dictate its self-assembly behavior and morphological outcome. Functionalization with an α-amino acid close to the BTA core, which also possesses a terminal terpyridine (tpy) unit, led to a robust gel in the case of glycine, whereas monodisperse, solid microspheres formed in the case of alanine, phenylalanine, and leucine. The self-assembly pathways of the chiral and achiral BTAs are orthogonal and both microspheres and gel fibers independently assemble in the same medium. Further hierarchical self-assembly results upon addition of lanthanide ions (i.e., Eu(III) and Tb(III) that emit at long wavelengths with long excited-state lifetimes) that crosslink the microspheres through coordination, whereas coordination within the gel led to a change in morphology toward microspheres, as well as the formation of hierarchical superstructures. The chirality of the BTA influences helicity of the assembly and the resulting enantiomeric conformation around the lanthanides, evidenced by circularly polarized luminescence.","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exerting control of self-assembly pathways via morphological switching and patterning in amino-acid-based benzene-1,3,5-tricarboxamide conjugates\",\"authors\":\"Aramballi J. Savyasachi, Oxana Kotova, Ena T. Luis, Amy D. Lynes, Shaun Mills, Sandra A. Bright, Gavin J. McManus, Matthias E. Möbius, D. Clive Williams, Robert Pal, John J. Boland, Thorfinnur Gunnlaugsson\",\"doi\":\"10.1016/j.chempr.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small structural changes to benzene-1,3,5-tricarboxamide (BTA) dictate its self-assembly behavior and morphological outcome. Functionalization with an α-amino acid close to the BTA core, which also possesses a terminal terpyridine (tpy) unit, led to a robust gel in the case of glycine, whereas monodisperse, solid microspheres formed in the case of alanine, phenylalanine, and leucine. The self-assembly pathways of the chiral and achiral BTAs are orthogonal and both microspheres and gel fibers independently assemble in the same medium. Further hierarchical self-assembly results upon addition of lanthanide ions (i.e., Eu(III) and Tb(III) that emit at long wavelengths with long excited-state lifetimes) that crosslink the microspheres through coordination, whereas coordination within the gel led to a change in morphology toward microspheres, as well as the formation of hierarchical superstructures. The chirality of the BTA influences helicity of the assembly and the resulting enantiomeric conformation around the lanthanides, evidenced by circularly polarized luminescence.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.09.020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.09.020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exerting control of self-assembly pathways via morphological switching and patterning in amino-acid-based benzene-1,3,5-tricarboxamide conjugates
Small structural changes to benzene-1,3,5-tricarboxamide (BTA) dictate its self-assembly behavior and morphological outcome. Functionalization with an α-amino acid close to the BTA core, which also possesses a terminal terpyridine (tpy) unit, led to a robust gel in the case of glycine, whereas monodisperse, solid microspheres formed in the case of alanine, phenylalanine, and leucine. The self-assembly pathways of the chiral and achiral BTAs are orthogonal and both microspheres and gel fibers independently assemble in the same medium. Further hierarchical self-assembly results upon addition of lanthanide ions (i.e., Eu(III) and Tb(III) that emit at long wavelengths with long excited-state lifetimes) that crosslink the microspheres through coordination, whereas coordination within the gel led to a change in morphology toward microspheres, as well as the formation of hierarchical superstructures. The chirality of the BTA influences helicity of the assembly and the resulting enantiomeric conformation around the lanthanides, evidenced by circularly polarized luminescence.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.