Can Zuo, Yumei Wen, Dongyu Chen, Jihai Ouyang, Ping Li
{"title":"磁控生物分子局部再结合-解离动力学中的停留时间预测","authors":"Can Zuo, Yumei Wen, Dongyu Chen, Jihai Ouyang, Ping Li","doi":"10.1016/j.aca.2024.343341","DOIUrl":null,"url":null,"abstract":"<div><div>The residence time of drug-target conjugates is a critical factor in drug screening and efficacy prediction. The local rebinding-dissociation kinetics gives insights into in-vivo drug-target interactions. A magnetic torque system (MTS) is designed to observe rebinding-dissociation kinetics for predicting residence time. The system utilizes an alternating magnetic field (AMF) to manipulate the magnetization motion of magnetically labeled biomolecules and the forces acting upon biomolecular bonds. The motion, sensed by a quartz crystal microbalance (QCM), reflects biomolecular interactions occurring at the particle surface. Meanwhile, the motion facilitates the separation of dissociated molecules from the surface, thereby obviating the necessity for fixed and mobile phases in common kinetics observations. The constant and static solution environment minimizes reagent consumption. The MTS was utilized to observe the local rebinding-dissociation of antibodies (PAB and MAB) to magnetic beads (MB) and to HER2 receptors. The residence times recorded by the MTS were larger than the results obtained via SPR method, due to the occurrences of rebinding-dissociation kinetics. Interaction behaviours can be meticulously regulated for varying affinities by modulating the intensity of magnetic field. A high intensity field (400 Oe) was applied for strong binding between antibody-MB (biotin-streptavidin), and a low intensity field (300 Oe) was applied for weak antigen-antibody interactions. An increase in AMF strength enhanced dissociation, with a shift from 300 Oe to 400 Oe resulting in a 1 ∼ 4-fold reduction in residence time. Overall, the MTS provides an interactive and customizable perspective on kinetics observations.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1331 ","pages":"Article 343341"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residence time prediction in magnetically controlled biomolecular local rebinding-dissociation kinetics\",\"authors\":\"Can Zuo, Yumei Wen, Dongyu Chen, Jihai Ouyang, Ping Li\",\"doi\":\"10.1016/j.aca.2024.343341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The residence time of drug-target conjugates is a critical factor in drug screening and efficacy prediction. The local rebinding-dissociation kinetics gives insights into in-vivo drug-target interactions. A magnetic torque system (MTS) is designed to observe rebinding-dissociation kinetics for predicting residence time. The system utilizes an alternating magnetic field (AMF) to manipulate the magnetization motion of magnetically labeled biomolecules and the forces acting upon biomolecular bonds. The motion, sensed by a quartz crystal microbalance (QCM), reflects biomolecular interactions occurring at the particle surface. Meanwhile, the motion facilitates the separation of dissociated molecules from the surface, thereby obviating the necessity for fixed and mobile phases in common kinetics observations. The constant and static solution environment minimizes reagent consumption. The MTS was utilized to observe the local rebinding-dissociation of antibodies (PAB and MAB) to magnetic beads (MB) and to HER2 receptors. The residence times recorded by the MTS were larger than the results obtained via SPR method, due to the occurrences of rebinding-dissociation kinetics. Interaction behaviours can be meticulously regulated for varying affinities by modulating the intensity of magnetic field. A high intensity field (400 Oe) was applied for strong binding between antibody-MB (biotin-streptavidin), and a low intensity field (300 Oe) was applied for weak antigen-antibody interactions. An increase in AMF strength enhanced dissociation, with a shift from 300 Oe to 400 Oe resulting in a 1 ∼ 4-fold reduction in residence time. Overall, the MTS provides an interactive and customizable perspective on kinetics observations.</div></div>\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":\"1331 \",\"pages\":\"Article 343341\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003267024011425\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267024011425","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Residence time prediction in magnetically controlled biomolecular local rebinding-dissociation kinetics
The residence time of drug-target conjugates is a critical factor in drug screening and efficacy prediction. The local rebinding-dissociation kinetics gives insights into in-vivo drug-target interactions. A magnetic torque system (MTS) is designed to observe rebinding-dissociation kinetics for predicting residence time. The system utilizes an alternating magnetic field (AMF) to manipulate the magnetization motion of magnetically labeled biomolecules and the forces acting upon biomolecular bonds. The motion, sensed by a quartz crystal microbalance (QCM), reflects biomolecular interactions occurring at the particle surface. Meanwhile, the motion facilitates the separation of dissociated molecules from the surface, thereby obviating the necessity for fixed and mobile phases in common kinetics observations. The constant and static solution environment minimizes reagent consumption. The MTS was utilized to observe the local rebinding-dissociation of antibodies (PAB and MAB) to magnetic beads (MB) and to HER2 receptors. The residence times recorded by the MTS were larger than the results obtained via SPR method, due to the occurrences of rebinding-dissociation kinetics. Interaction behaviours can be meticulously regulated for varying affinities by modulating the intensity of magnetic field. A high intensity field (400 Oe) was applied for strong binding between antibody-MB (biotin-streptavidin), and a low intensity field (300 Oe) was applied for weak antigen-antibody interactions. An increase in AMF strength enhanced dissociation, with a shift from 300 Oe to 400 Oe resulting in a 1 ∼ 4-fold reduction in residence time. Overall, the MTS provides an interactive and customizable perspective on kinetics observations.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.