{"title":"用于变形监测的可拉伸等离子体元表面","authors":"Peiyang Li, Kaikai Gao, Ruize Ma, Kai Pan, Dong Li, Feng Liu, Peng Li, Xuetao Gan, Jianlin Zhao, Dandan Wen","doi":"10.1515/nanoph-2024-0461","DOIUrl":null,"url":null,"abstract":"Metasurfaces have recently gained significant attention due to the strong capacity in light field manipulation. However, most traditional metasurfaces are fabricated on rigid substrates, which fix their functionality after fabrication and limit their applications in dynamic measurement fields. In this work, we designed and fabricated a silver metasurface embedded in a stretchable substrate for sensing applications. This metasurface can generate different point cloud patterns under varying stretch ratios when illuminated by a laser beam. By collecting and analyzing the patterns, we can precisely reconstruct the deformation of the metasurface. Furthermore, the sample exhibits excellent performance under incident light of various wavelengths. These results pave the way for developing microdevices with novel capabilities based on flexible metamaterials.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"89 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stretchable plasmonic metasurfaces for deformation monitoring\",\"authors\":\"Peiyang Li, Kaikai Gao, Ruize Ma, Kai Pan, Dong Li, Feng Liu, Peng Li, Xuetao Gan, Jianlin Zhao, Dandan Wen\",\"doi\":\"10.1515/nanoph-2024-0461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metasurfaces have recently gained significant attention due to the strong capacity in light field manipulation. However, most traditional metasurfaces are fabricated on rigid substrates, which fix their functionality after fabrication and limit their applications in dynamic measurement fields. In this work, we designed and fabricated a silver metasurface embedded in a stretchable substrate for sensing applications. This metasurface can generate different point cloud patterns under varying stretch ratios when illuminated by a laser beam. By collecting and analyzing the patterns, we can precisely reconstruct the deformation of the metasurface. Furthermore, the sample exhibits excellent performance under incident light of various wavelengths. These results pave the way for developing microdevices with novel capabilities based on flexible metamaterials.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0461\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0461","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stretchable plasmonic metasurfaces for deformation monitoring
Metasurfaces have recently gained significant attention due to the strong capacity in light field manipulation. However, most traditional metasurfaces are fabricated on rigid substrates, which fix their functionality after fabrication and limit their applications in dynamic measurement fields. In this work, we designed and fabricated a silver metasurface embedded in a stretchable substrate for sensing applications. This metasurface can generate different point cloud patterns under varying stretch ratios when illuminated by a laser beam. By collecting and analyzing the patterns, we can precisely reconstruct the deformation of the metasurface. Furthermore, the sample exhibits excellent performance under incident light of various wavelengths. These results pave the way for developing microdevices with novel capabilities based on flexible metamaterials.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.