通过内质网应激和线粒体功能障碍的级联强化,用于杯突/钝化/凋亡癌症疗法的中空钙/铜双金属放大器

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-16 DOI:10.1021/acsnano.4c11455
Weijun Xu, Aili Suo, Abdalrheem Jarelnaby Musa Aldai, Yaping Wang, Jingjing Fan, Yuxiang Xia, Jiaxuan Xu, Zhexi Chen, Huichen Zhao, Mingzhen Zhang, Junmin Qian
{"title":"通过内质网应激和线粒体功能障碍的级联强化,用于杯突/钝化/凋亡癌症疗法的中空钙/铜双金属放大器","authors":"Weijun Xu, Aili Suo, Abdalrheem Jarelnaby Musa Aldai, Yaping Wang, Jingjing Fan, Yuxiang Xia, Jiaxuan Xu, Zhexi Chen, Huichen Zhao, Mingzhen Zhang, Junmin Qian","doi":"10.1021/acsnano.4c11455","DOIUrl":null,"url":null,"abstract":"The endoplasmic reticulum (ER) and mitochondria are essential organelles that play crucial roles in maintaining cellular homeostasis. The simultaneous induction of ER stress and mitochondrial dysfunction represents a promising yet challenging strategy for cancer treatment. Herein, a hollow calcium–copper bimetallic nanoplatform is developed as a cascade amplifier to reinforce ER stress and mitochondrial dysfunction for breast cancer treatment. For this purpose, we report a facile method for preparing hollow CaCO<sub>3</sub> (HCC) nanoparticles by regulating the dissolution–recrystallization process of amorphous CaCO<sub>3</sub>, and the amplifier D@HCC-CuTH is meticulously fabricated by sequentially coating disulfiram-loaded HCC nanoparticles with a copper coordination polymer and hyaluronan. In tumor cells, the dithiocarbamate–copper complex generated <i>in situ</i> by liberated disulfiram and Cu<sup>2+</sup> inhibits the ubiquitin–proteasome system, causing irreversible ER stress and intracellular Ca<sup>2+</sup> redistribution. Meanwhile, the amplifier induces mitochondrial dysfunction via triggering a self-amplifying loop of mitochondrial Ca<sup>2+</sup> burst, and reactive oxygen species augment. Additionally, Cu<sup>2+</sup> induces dihydrolipoamide S-acetyltransferase oligomerization in mitochondria, further exacerbating mitochondrial damage via cuproptosis. Collectively, ER stress amplification and mitochondrial dysfunction synergistically induce a cuproptosis–paraptosis–apoptosis trimodal cell death pathway, which demonstrates significant efficacy in suppressing tumor growth. This study presents a paradigm for synchronously inducing subcellular organelle disorders to boost cancer multimodal therapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction\",\"authors\":\"Weijun Xu, Aili Suo, Abdalrheem Jarelnaby Musa Aldai, Yaping Wang, Jingjing Fan, Yuxiang Xia, Jiaxuan Xu, Zhexi Chen, Huichen Zhao, Mingzhen Zhang, Junmin Qian\",\"doi\":\"10.1021/acsnano.4c11455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endoplasmic reticulum (ER) and mitochondria are essential organelles that play crucial roles in maintaining cellular homeostasis. The simultaneous induction of ER stress and mitochondrial dysfunction represents a promising yet challenging strategy for cancer treatment. Herein, a hollow calcium–copper bimetallic nanoplatform is developed as a cascade amplifier to reinforce ER stress and mitochondrial dysfunction for breast cancer treatment. For this purpose, we report a facile method for preparing hollow CaCO<sub>3</sub> (HCC) nanoparticles by regulating the dissolution–recrystallization process of amorphous CaCO<sub>3</sub>, and the amplifier D@HCC-CuTH is meticulously fabricated by sequentially coating disulfiram-loaded HCC nanoparticles with a copper coordination polymer and hyaluronan. In tumor cells, the dithiocarbamate–copper complex generated <i>in situ</i> by liberated disulfiram and Cu<sup>2+</sup> inhibits the ubiquitin–proteasome system, causing irreversible ER stress and intracellular Ca<sup>2+</sup> redistribution. Meanwhile, the amplifier induces mitochondrial dysfunction via triggering a self-amplifying loop of mitochondrial Ca<sup>2+</sup> burst, and reactive oxygen species augment. Additionally, Cu<sup>2+</sup> induces dihydrolipoamide S-acetyltransferase oligomerization in mitochondria, further exacerbating mitochondrial damage via cuproptosis. Collectively, ER stress amplification and mitochondrial dysfunction synergistically induce a cuproptosis–paraptosis–apoptosis trimodal cell death pathway, which demonstrates significant efficacy in suppressing tumor growth. This study presents a paradigm for synchronously inducing subcellular organelle disorders to boost cancer multimodal therapy.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c11455\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11455","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

内质网(ER)和线粒体是维持细胞平衡的重要细胞器。同时诱导内质网应激和线粒体功能障碍是一种前景广阔但极具挑战性的癌症治疗策略。在此,我们开发了一种中空的钙铜双金属纳米平台,作为一种级联放大器来强化ER应激和线粒体功能障碍,从而治疗乳腺癌。为此,我们报告了一种通过调节无定形 CaCO3 的溶解-重结晶过程来制备中空 CaCO3(HCC)纳米颗粒的简便方法,并通过将铜配位聚合物和透明质酸依次包覆在双硫仑负载的 HCC 纳米颗粒上,精心制作了放大器 D@HCC-CuTH。在肿瘤细胞中,双硫仑和 Cu2+ 在原位生成的二硫代氨基甲酸铜复合物会抑制泛素-蛋白酶体系统,造成不可逆的 ER 压力和细胞内 Ca2+ 重新分布。同时,放大器通过触发线粒体 Ca2+ 暴发的自我放大循环,诱发线粒体功能障碍,活性氧增加。此外,Cu2+ 还会诱导线粒体中的二氢脂酰胺 S-乙酰转移酶寡聚化,通过杯突作用进一步加剧线粒体损伤。总之,ER 应激放大和线粒体功能障碍会协同诱导杯突-凋亡-细胞凋亡三模式细胞死亡途径,从而在抑制肿瘤生长方面发挥显著功效。这项研究提出了一种同步诱导亚细胞器紊乱以促进癌症多模式治疗的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction
The endoplasmic reticulum (ER) and mitochondria are essential organelles that play crucial roles in maintaining cellular homeostasis. The simultaneous induction of ER stress and mitochondrial dysfunction represents a promising yet challenging strategy for cancer treatment. Herein, a hollow calcium–copper bimetallic nanoplatform is developed as a cascade amplifier to reinforce ER stress and mitochondrial dysfunction for breast cancer treatment. For this purpose, we report a facile method for preparing hollow CaCO3 (HCC) nanoparticles by regulating the dissolution–recrystallization process of amorphous CaCO3, and the amplifier D@HCC-CuTH is meticulously fabricated by sequentially coating disulfiram-loaded HCC nanoparticles with a copper coordination polymer and hyaluronan. In tumor cells, the dithiocarbamate–copper complex generated in situ by liberated disulfiram and Cu2+ inhibits the ubiquitin–proteasome system, causing irreversible ER stress and intracellular Ca2+ redistribution. Meanwhile, the amplifier induces mitochondrial dysfunction via triggering a self-amplifying loop of mitochondrial Ca2+ burst, and reactive oxygen species augment. Additionally, Cu2+ induces dihydrolipoamide S-acetyltransferase oligomerization in mitochondria, further exacerbating mitochondrial damage via cuproptosis. Collectively, ER stress amplification and mitochondrial dysfunction synergistically induce a cuproptosis–paraptosis–apoptosis trimodal cell death pathway, which demonstrates significant efficacy in suppressing tumor growth. This study presents a paradigm for synchronously inducing subcellular organelle disorders to boost cancer multimodal therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Enhanced Asymmetric Circularly Polarized Luminescence in Self-Organized Helical Superstructures Enabled by Macro-Chiral Liquid Crystal Quantum Dots. Giant Colloidal Quantum Dot/α-Ga2O3 Heterojunction for High Performance UV-Vis-IR Broadband Photodetector. Profiling Phenotypic Heterogeneity of Circulating Tumor Cells through Spatially Resolved Immunocapture on Nanoporous Micropillar Arrays. Triggered Cascade-Activation Nanoplatform to Alleviate Hypoxia for Effective Tumor Immunotherapy Guided by NIR-II Imaging. Durable Photothermal Superhydrophobic Coating Comprising Micro- and Nanoscale Morphologies and Water-Soluble Siloxane for Efficient Anti-Icing and Deicing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1