纳米氧化锂(Li3VO4)颗粒/多孔掺杂 N 的纳米碳纤维的快速锂存储动力学

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-10-16 DOI:10.1016/j.est.2024.114193
{"title":"纳米氧化锂(Li3VO4)颗粒/多孔掺杂 N 的纳米碳纤维的快速锂存储动力学","authors":"","doi":"10.1016/j.est.2024.114193","DOIUrl":null,"url":null,"abstract":"<div><div>Li<sub>3</sub>VO<sub>4</sub> (LVO) has been recognized as an alternative anode material for lithium-ion batteries (LIBs) because of its appropriate lithium storage potential and capacity merits. However, its practical application is seriously hindered by slow reaction kinetics stemming from poor electronic conductivity. Herein, Li<sub>3</sub>VO<sub>4</sub>/porous N-doped carbon nanofibers (LVO/PNC NFs) are firstly designed and fabricated <em>via</em> an electrospinning method, utilizing the thermal decomposition characteristics of polylactic acid (PLA). The porous N-doped carbon nanofibers provide efficient electrolyte diffusion paths and facilitate ion transport. In addition, LVO nanoparticles are uniformly dispersed along the nanofibers to effectively inhibit particle aggregation. The obtained LVO/PNC NFs are evaluated as anodes for LIBs and deliver high reversible capacity of 768 mAh g<sup>−1</sup> after 300 cycles at 0.2 A g<sup>−1</sup>, along with excellent rate capability (average capacity of 355 mAh g<sup>−1</sup> at 8 A g<sup>−1</sup> after 6 periodic rate testing) and long cycling life (286 mAh g<sup>−1</sup> after 2000 cycles at 4 A g<sup>−1</sup>). The special porous nanofiber represents an effective strategy for improving the electronic conductivity, inhibiting particle aggregation, and ensuring rapid ion/charge transport towards advanced energy storage technologies.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast kinetics for lithium storage rendered by Li3VO4 nanoparticles/porous N-doped carbon nanofibers\",\"authors\":\"\",\"doi\":\"10.1016/j.est.2024.114193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Li<sub>3</sub>VO<sub>4</sub> (LVO) has been recognized as an alternative anode material for lithium-ion batteries (LIBs) because of its appropriate lithium storage potential and capacity merits. However, its practical application is seriously hindered by slow reaction kinetics stemming from poor electronic conductivity. Herein, Li<sub>3</sub>VO<sub>4</sub>/porous N-doped carbon nanofibers (LVO/PNC NFs) are firstly designed and fabricated <em>via</em> an electrospinning method, utilizing the thermal decomposition characteristics of polylactic acid (PLA). The porous N-doped carbon nanofibers provide efficient electrolyte diffusion paths and facilitate ion transport. In addition, LVO nanoparticles are uniformly dispersed along the nanofibers to effectively inhibit particle aggregation. The obtained LVO/PNC NFs are evaluated as anodes for LIBs and deliver high reversible capacity of 768 mAh g<sup>−1</sup> after 300 cycles at 0.2 A g<sup>−1</sup>, along with excellent rate capability (average capacity of 355 mAh g<sup>−1</sup> at 8 A g<sup>−1</sup> after 6 periodic rate testing) and long cycling life (286 mAh g<sup>−1</sup> after 2000 cycles at 4 A g<sup>−1</sup>). The special porous nanofiber represents an effective strategy for improving the electronic conductivity, inhibiting particle aggregation, and ensuring rapid ion/charge transport towards advanced energy storage technologies.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24037794\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24037794","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

Li3VO4(LVO)具有适当的锂储存潜力和容量优势,已被公认为锂离子电池(LIB)的替代负极材料。然而,由于电子传导性差,反应动力学缓慢,严重阻碍了其实际应用。本文首先利用聚乳酸(PLA)的热分解特性,通过电纺丝方法设计并制备了 Li3VO4/多孔 N 掺杂碳纳米纤维(LVO/PNC NFs)。多孔的 N 掺杂碳纳米纤维提供了有效的电解质扩散路径,促进了离子传输。此外,LVO 纳米粒子沿纳米纤维均匀分散,有效抑制了粒子聚集。所获得的 LVO/PNC NF 被评估为 LIB 的阳极,在 0.2 A g-1 的条件下循环 300 次后,可提供 768 mAh g-1 的高可逆容量,同时还具有出色的速率能力(在 8 A g-1 的条件下循环 6 次后,平均容量为 355 mAh g-1)和长循环寿命(在 4 A g-1 的条件下循环 2000 次后,平均容量为 286 mAh g-1)。这种特殊的多孔纳米纤维是提高电子导电性、抑制颗粒聚集和确保离子/电荷快速传输的有效策略,可用于先进的储能技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast kinetics for lithium storage rendered by Li3VO4 nanoparticles/porous N-doped carbon nanofibers
Li3VO4 (LVO) has been recognized as an alternative anode material for lithium-ion batteries (LIBs) because of its appropriate lithium storage potential and capacity merits. However, its practical application is seriously hindered by slow reaction kinetics stemming from poor electronic conductivity. Herein, Li3VO4/porous N-doped carbon nanofibers (LVO/PNC NFs) are firstly designed and fabricated via an electrospinning method, utilizing the thermal decomposition characteristics of polylactic acid (PLA). The porous N-doped carbon nanofibers provide efficient electrolyte diffusion paths and facilitate ion transport. In addition, LVO nanoparticles are uniformly dispersed along the nanofibers to effectively inhibit particle aggregation. The obtained LVO/PNC NFs are evaluated as anodes for LIBs and deliver high reversible capacity of 768 mAh g−1 after 300 cycles at 0.2 A g−1, along with excellent rate capability (average capacity of 355 mAh g−1 at 8 A g−1 after 6 periodic rate testing) and long cycling life (286 mAh g−1 after 2000 cycles at 4 A g−1). The special porous nanofiber represents an effective strategy for improving the electronic conductivity, inhibiting particle aggregation, and ensuring rapid ion/charge transport towards advanced energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Improvement of the thermal management of lithium-ion battery with helical tube liquid cooling and phase change material integration Efficiency improvement and pressure pulsation reduction of volute centrifugal pump through diffuser design optimization Fast kinetics for lithium storage rendered by Li3VO4 nanoparticles/porous N-doped carbon nanofibers Accelerating float current measurement with temperature ramps revealing entropy insights A highly water-soluble phenoxazine quaternary ammonium compound catholyte for pH-neutral aqueous organic redox flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1