Min Li , Zhen-Fang Shang , Zhi-Jing Ni, Hui-Jun Zhao, Qian Lei, Zhao-Jun Wei
{"title":"肉桂酸及其衍生物对拟肾上腺小球藻生长和代谢的调节作用","authors":"Min Li , Zhen-Fang Shang , Zhi-Jing Ni, Hui-Jun Zhao, Qian Lei, Zhao-Jun Wei","doi":"10.1016/j.algal.2024.103742","DOIUrl":null,"url":null,"abstract":"<div><div><em>Auxenochlorella pyrenoidosa</em>'s industrial utility is closely associated with the concentration of high-value products. This study focuses on the effects of cinnamic acid (CA) and its derivatives, which known as secondary metabolites in higher plants and effective plant growth regulators, on the growth and metabolic profiles of <em>A. pyrenoidosa</em>. It was discovered that CA and its derivatives significantly enhance the biomass of <em>A. pyrenoidosa</em> under conditions of 10 mg/L over 48 h or 100 mg/L over 120 h. Cells treated with 10 mg/L CA exhibited lower oxidative stress and maintained robust metabolic activity. Metabolic pathways, including those for carbohydrates, lipids, small peptides, and cofactors, were stimulated, leading to the accumulation of a wide array of bio-products, notably high-value products such as α-linolenic acid, cis-4,7,10,13,16,19-docosahexaenoic acid (DHA), nicotinamide adenine dinucleotide plus hydrogen (NADH), glutathione, and vitamins B2/B3. This study demonstrates that CA and its derivatives are good nutritional enhancers for cultivating <em>A. pyrenoidosa</em>, highlighting their potential for broad application in biotechnological industries.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103742"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and metabolism regulation of cinnamic acid and its derivatives to Auxenochlorella pyrenoidosa\",\"authors\":\"Min Li , Zhen-Fang Shang , Zhi-Jing Ni, Hui-Jun Zhao, Qian Lei, Zhao-Jun Wei\",\"doi\":\"10.1016/j.algal.2024.103742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Auxenochlorella pyrenoidosa</em>'s industrial utility is closely associated with the concentration of high-value products. This study focuses on the effects of cinnamic acid (CA) and its derivatives, which known as secondary metabolites in higher plants and effective plant growth regulators, on the growth and metabolic profiles of <em>A. pyrenoidosa</em>. It was discovered that CA and its derivatives significantly enhance the biomass of <em>A. pyrenoidosa</em> under conditions of 10 mg/L over 48 h or 100 mg/L over 120 h. Cells treated with 10 mg/L CA exhibited lower oxidative stress and maintained robust metabolic activity. Metabolic pathways, including those for carbohydrates, lipids, small peptides, and cofactors, were stimulated, leading to the accumulation of a wide array of bio-products, notably high-value products such as α-linolenic acid, cis-4,7,10,13,16,19-docosahexaenoic acid (DHA), nicotinamide adenine dinucleotide plus hydrogen (NADH), glutathione, and vitamins B2/B3. This study demonstrates that CA and its derivatives are good nutritional enhancers for cultivating <em>A. pyrenoidosa</em>, highlighting their potential for broad application in biotechnological industries.</div></div>\",\"PeriodicalId\":7855,\"journal\":{\"name\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"volume\":\"84 \",\"pages\":\"Article 103742\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211926424003540\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424003540","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Growth and metabolism regulation of cinnamic acid and its derivatives to Auxenochlorella pyrenoidosa
Auxenochlorella pyrenoidosa's industrial utility is closely associated with the concentration of high-value products. This study focuses on the effects of cinnamic acid (CA) and its derivatives, which known as secondary metabolites in higher plants and effective plant growth regulators, on the growth and metabolic profiles of A. pyrenoidosa. It was discovered that CA and its derivatives significantly enhance the biomass of A. pyrenoidosa under conditions of 10 mg/L over 48 h or 100 mg/L over 120 h. Cells treated with 10 mg/L CA exhibited lower oxidative stress and maintained robust metabolic activity. Metabolic pathways, including those for carbohydrates, lipids, small peptides, and cofactors, were stimulated, leading to the accumulation of a wide array of bio-products, notably high-value products such as α-linolenic acid, cis-4,7,10,13,16,19-docosahexaenoic acid (DHA), nicotinamide adenine dinucleotide plus hydrogen (NADH), glutathione, and vitamins B2/B3. This study demonstrates that CA and its derivatives are good nutritional enhancers for cultivating A. pyrenoidosa, highlighting their potential for broad application in biotechnological industries.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment