Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang
{"title":"在 CdS 半导体上绿色可控地合成 CdNCN:用于增强光催化氢进化的原子级异质结构","authors":"Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang","doi":"10.1016/j.apmate.2024.100242","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]<sup>2</sup><sup>⁻</sup> moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100242"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution\",\"authors\":\"Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang\",\"doi\":\"10.1016/j.apmate.2024.100242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]<sup>2</sup><sup>⁻</sup> moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.</div></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 6\",\"pages\":\"Article 100242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution
In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]2⁻ moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 mmol g−1 h−1 under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.