无金属 Te/C3N4 p-n 异质结的大气工程,几乎 100% 光催化将 CO2 转化为 CO

Huange Liao , Kai Huang , Weidong Hou , Huazhang Guo , Cheng Lian , Jiye Zhang , Zheng Liu , Liang Wang
{"title":"无金属 Te/C3N4 p-n 异质结的大气工程,几乎 100% 光催化将 CO2 转化为 CO","authors":"Huange Liao ,&nbsp;Kai Huang ,&nbsp;Weidong Hou ,&nbsp;Huazhang Guo ,&nbsp;Cheng Lian ,&nbsp;Jiye Zhang ,&nbsp;Zheng Liu ,&nbsp;Liang Wang","doi":"10.1016/j.apmate.2024.100243","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon nitride (CN)-based heterojunction photocatalysts hold promise for efficient carbon dioxide (CO<sub>2</sub>) reduction. However, suboptimal production yields and limited selectivity in CO<sub>2</sub> conversion pose significant barriers to achieving efficient CO<sub>2</sub> conversion. Here, we present the construction of a p-n heterojunction between ultrasmall Te NPs and CN nanosheet using a novel tandem hydrothermal-calcination synthesis strategy. Through ammonia-assisted calcination, ultrasmall Te NPs are grown in-situ on the CN nanosheets’ surface, resulting in the generation of a robust p-n heterojunction. The synthesized heterojunction exhibits increased specific surface area, reinforced visible light absorption, intensive CO<sub>2</sub> adsorption capacity, and efficient charge transfer. The optimum Te/CN-NH<sub>3</sub> demonstrates superior photocatalytic CO<sub>2</sub> reduction activity and durability, with nearly 100 ​% selectivity for CO and a yield as high as 92.0 ​μmol ​g<sup>−1</sup> ​h<sup>−1</sup>, a fourfold increase compared to pure CN. Experimental and theoretical calculations unravel that the strong built-in electric field of the Te/CN-NH<sub>3</sub> p-n heterojunction accelerates the migration of photogenerated electrons from Te NPs to the N site on CN nanosheets, thereby promoting CO<sub>2</sub> reduction. This study provides a promising material design approach for the construction of high-performance p-n heterojunction photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100243"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmosphere engineering of metal-free Te/C3N4 p-n heterojunction for nearly 100% photocatalytic converting CO2 to CO\",\"authors\":\"Huange Liao ,&nbsp;Kai Huang ,&nbsp;Weidong Hou ,&nbsp;Huazhang Guo ,&nbsp;Cheng Lian ,&nbsp;Jiye Zhang ,&nbsp;Zheng Liu ,&nbsp;Liang Wang\",\"doi\":\"10.1016/j.apmate.2024.100243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon nitride (CN)-based heterojunction photocatalysts hold promise for efficient carbon dioxide (CO<sub>2</sub>) reduction. However, suboptimal production yields and limited selectivity in CO<sub>2</sub> conversion pose significant barriers to achieving efficient CO<sub>2</sub> conversion. Here, we present the construction of a p-n heterojunction between ultrasmall Te NPs and CN nanosheet using a novel tandem hydrothermal-calcination synthesis strategy. Through ammonia-assisted calcination, ultrasmall Te NPs are grown in-situ on the CN nanosheets’ surface, resulting in the generation of a robust p-n heterojunction. The synthesized heterojunction exhibits increased specific surface area, reinforced visible light absorption, intensive CO<sub>2</sub> adsorption capacity, and efficient charge transfer. The optimum Te/CN-NH<sub>3</sub> demonstrates superior photocatalytic CO<sub>2</sub> reduction activity and durability, with nearly 100 ​% selectivity for CO and a yield as high as 92.0 ​μmol ​g<sup>−1</sup> ​h<sup>−1</sup>, a fourfold increase compared to pure CN. Experimental and theoretical calculations unravel that the strong built-in electric field of the Te/CN-NH<sub>3</sub> p-n heterojunction accelerates the migration of photogenerated electrons from Te NPs to the N site on CN nanosheets, thereby promoting CO<sub>2</sub> reduction. This study provides a promising material design approach for the construction of high-performance p-n heterojunction photocatalysts.</div></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 6\",\"pages\":\"Article 100243\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于氮化碳(CN)的异质结光催化剂有望实现二氧化碳(CO2)的高效还原。然而,二氧化碳转化过程中不理想的产量和有限的选择性是实现二氧化碳高效转化的重大障碍。在此,我们采用一种新颖的串联水热-煅烧合成策略,构建了超小 Te NPs 与 CN 纳米片之间的 p-n 异质结。通过氨辅助煅烧,超小 Te NPs 在 CN 纳米片表面原位生长,从而生成了一个坚固的 p-n 异质结。合成的异质结具有更高的比表面积、更强的可见光吸收能力、更强的二氧化碳吸附能力以及高效的电荷转移能力。最佳的 Te/CN-NH3 显示出卓越的光催化二氧化碳还原活性和耐久性,对一氧化碳的选择性接近 100%,产率高达 92.0 μmol g-1 h-1,比纯 CN 提高了四倍。实验和理论计算表明,Te/CN-NH3 p-n 异质结的强内置电场加速了光生电子从 Te NPs 迁移到 CN 纳米片上的 N 位点,从而促进了 CO2 的还原。这项研究为构建高性能 p-n 异质结光催化剂提供了一种很有前景的材料设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atmosphere engineering of metal-free Te/C3N4 p-n heterojunction for nearly 100% photocatalytic converting CO2 to CO
Carbon nitride (CN)-based heterojunction photocatalysts hold promise for efficient carbon dioxide (CO2) reduction. However, suboptimal production yields and limited selectivity in CO2 conversion pose significant barriers to achieving efficient CO2 conversion. Here, we present the construction of a p-n heterojunction between ultrasmall Te NPs and CN nanosheet using a novel tandem hydrothermal-calcination synthesis strategy. Through ammonia-assisted calcination, ultrasmall Te NPs are grown in-situ on the CN nanosheets’ surface, resulting in the generation of a robust p-n heterojunction. The synthesized heterojunction exhibits increased specific surface area, reinforced visible light absorption, intensive CO2 adsorption capacity, and efficient charge transfer. The optimum Te/CN-NH3 demonstrates superior photocatalytic CO2 reduction activity and durability, with nearly 100 ​% selectivity for CO and a yield as high as 92.0 ​μmol ​g−1 ​h−1, a fourfold increase compared to pure CN. Experimental and theoretical calculations unravel that the strong built-in electric field of the Te/CN-NH3 p-n heterojunction accelerates the migration of photogenerated electrons from Te NPs to the N site on CN nanosheets, thereby promoting CO2 reduction. This study provides a promising material design approach for the construction of high-performance p-n heterojunction photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Heteroatom doping in 2D MXenes for energy storage/conversion applications Advances in electrocatalytic urea synthesis: From fundamentals to applications Atomically dispersed NiOx cluster on high-index Pt facets boost ethanol electrooxidation through long-range synergistic sites Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution Atmosphere engineering of metal-free Te/C3N4 p-n heterojunction for nearly 100% photocatalytic converting CO2 to CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1