地震图像分割深度学习文献综述

IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth-Science Reviews Pub Date : 2024-10-10 DOI:10.1016/j.earscirev.2024.104955
Bruno A.A. Monteiro , Gabriel L. Canguçu , Leonardo M.S. Jorge , Rafael H. Vareto , Bryan S. Oliveira , Thales H. Silva , Luiz Alberto Lima , Alexei M.C. Machado , William Robson Schwartz , Pedro O.S. Vaz-de-Melo
{"title":"地震图像分割深度学习文献综述","authors":"Bruno A.A. Monteiro ,&nbsp;Gabriel L. Canguçu ,&nbsp;Leonardo M.S. Jorge ,&nbsp;Rafael H. Vareto ,&nbsp;Bryan S. Oliveira ,&nbsp;Thales H. Silva ,&nbsp;Luiz Alberto Lima ,&nbsp;Alexei M.C. Machado ,&nbsp;William Robson Schwartz ,&nbsp;Pedro O.S. Vaz-de-Melo","doi":"10.1016/j.earscirev.2024.104955","DOIUrl":null,"url":null,"abstract":"<div><div>This systematic literature review provides a comprehensive overview of the current state of deep learning (DL) specifically targeted at semantic segmentation in seismic data, with a particular focus on facies segmentation. We begin by comparing the contributions of DL to traditional techniques used in seismic image interpretation. The review then explores the learning paradigms, architectures, loss functions, public datasets, and evaluation metrics employed in seismic data segmentation. While supervised learning remains the dominant approach, recent years have seen a growing interest in semi-supervised and unsupervised methods to address the challenge of limited labeled data. Additionally, we found that the U-Net architecture is the most prevalent backbone for semantic segmentation, appearing in one-third of the articles reviewed. We also present a comprehensive compilation of the results obtained by 24 methods and discuss the challenges and research opportunities in this field. Notably, the lack of standardized protocols for performance comparison, combined with variability in datasets and evaluation metrics across studies, raises questions about what truly constitutes the current state of the art in semantic segmentation of seismic data.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104955"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Literature review on deep learning for the segmentation of seismic images\",\"authors\":\"Bruno A.A. Monteiro ,&nbsp;Gabriel L. Canguçu ,&nbsp;Leonardo M.S. Jorge ,&nbsp;Rafael H. Vareto ,&nbsp;Bryan S. Oliveira ,&nbsp;Thales H. Silva ,&nbsp;Luiz Alberto Lima ,&nbsp;Alexei M.C. Machado ,&nbsp;William Robson Schwartz ,&nbsp;Pedro O.S. Vaz-de-Melo\",\"doi\":\"10.1016/j.earscirev.2024.104955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This systematic literature review provides a comprehensive overview of the current state of deep learning (DL) specifically targeted at semantic segmentation in seismic data, with a particular focus on facies segmentation. We begin by comparing the contributions of DL to traditional techniques used in seismic image interpretation. The review then explores the learning paradigms, architectures, loss functions, public datasets, and evaluation metrics employed in seismic data segmentation. While supervised learning remains the dominant approach, recent years have seen a growing interest in semi-supervised and unsupervised methods to address the challenge of limited labeled data. Additionally, we found that the U-Net architecture is the most prevalent backbone for semantic segmentation, appearing in one-third of the articles reviewed. We also present a comprehensive compilation of the results obtained by 24 methods and discuss the challenges and research opportunities in this field. Notably, the lack of standardized protocols for performance comparison, combined with variability in datasets and evaluation metrics across studies, raises questions about what truly constitutes the current state of the art in semantic segmentation of seismic data.</div></div>\",\"PeriodicalId\":11483,\"journal\":{\"name\":\"Earth-Science Reviews\",\"volume\":\"258 \",\"pages\":\"Article 104955\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth-Science Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012825224002836\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224002836","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本系统性文献综述全面概述了专门针对地震数据语义分割的深度学习(DL)的现状,尤其侧重于面层分割。我们首先比较了深度学习与地震图像解释中使用的传统技术的贡献。然后,综述探讨了地震数据分割中采用的学习范式、架构、损失函数、公共数据集和评估指标。虽然监督学习仍是主流方法,但近年来人们对半监督和无监督方法的兴趣与日俱增,以应对标记数据有限的挑战。此外,我们还发现,U-Net 架构是语义分割最普遍的骨干架构,出现在三分之一的综述文章中。我们还对 24 种方法取得的结果进行了综合汇编,并讨论了这一领域的挑战和研究机会。值得注意的是,由于缺乏用于性能比较的标准化协议,再加上不同研究的数据集和评估指标存在差异,这让人对地震数据语义分割的当前技术水平产生了疑问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Literature review on deep learning for the segmentation of seismic images
This systematic literature review provides a comprehensive overview of the current state of deep learning (DL) specifically targeted at semantic segmentation in seismic data, with a particular focus on facies segmentation. We begin by comparing the contributions of DL to traditional techniques used in seismic image interpretation. The review then explores the learning paradigms, architectures, loss functions, public datasets, and evaluation metrics employed in seismic data segmentation. While supervised learning remains the dominant approach, recent years have seen a growing interest in semi-supervised and unsupervised methods to address the challenge of limited labeled data. Additionally, we found that the U-Net architecture is the most prevalent backbone for semantic segmentation, appearing in one-third of the articles reviewed. We also present a comprehensive compilation of the results obtained by 24 methods and discuss the challenges and research opportunities in this field. Notably, the lack of standardized protocols for performance comparison, combined with variability in datasets and evaluation metrics across studies, raises questions about what truly constitutes the current state of the art in semantic segmentation of seismic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth-Science Reviews
Earth-Science Reviews 地学-地球科学综合
CiteScore
21.70
自引率
5.80%
发文量
294
审稿时长
15.1 weeks
期刊介绍: Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.
期刊最新文献
Metallogeny of Late Paleozoic lode gold mineralization of western Tien Shan: From orogenic shortening to intracontinental strike-slip shearing Precambrian tectonic evolution of the Qaidam block, northern Tibet: Implications for the assembly and breakup of Proterozoic supercontinents Fate of ‘forever chemicals’ in the global cryosphere Incorporating cross-scale insights into colloid-facilitated radionuclide transport in fractured rocks: A critical review Biostabilization: Parameterizing the interactions between microorganisms and siliciclastic marine sediments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1