利用潜类和序数广义极值 (GEV) 模型为家庭网购和送货上门需求建模

IF 2.8 3区 经济学 Q1 ECONOMICS Journal of Choice Modelling Pub Date : 2024-10-16 DOI:10.1016/j.jocm.2024.100521
Kaili Wang, Ya Gao, Khandker Nurul Habib
{"title":"利用潜类和序数广义极值 (GEV) 模型为家庭网购和送货上门需求建模","authors":"Kaili Wang,&nbsp;Ya Gao,&nbsp;Khandker Nurul Habib","doi":"10.1016/j.jocm.2024.100521","DOIUrl":null,"url":null,"abstract":"<div><div>The surge in e-commerce during the past decade has led to dramatic changes in consumer shopping behaviour. The study applies two Generalized Extreme Value (GEV) family models to investigate households' e-shopping demands. The study proposes a model structure to jointly model ordinal-based choice behaviour with choice-makers' latent class membership. Introducing latent class structure with the OGEV formulation accounts for the relationship between choice-makers heterogeneous preferential groups and their ordinal choice outcomes. Furthermore, the study also applies the Ordered General Extreme Value (OGEV)-Negative Binomial (NB) model, capturing the interplay between consumers' in-store shopping demands and online shopping behaviour. The RUM principle inherited within the OGEV-NB model allows econometric valuation of in-store shopping activity explicitly considering households' e-shopping demands. Both models are empirically estimated using a dataset collected in the Greater Toronto Area (GTA), Canada. The empirical findings and behavioural implications are also discussed.</div></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"53 ","pages":"Article 100521"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling household online shopping and home delivery demand using latent class & ordinal generalized extreme value (GEV) models\",\"authors\":\"Kaili Wang,&nbsp;Ya Gao,&nbsp;Khandker Nurul Habib\",\"doi\":\"10.1016/j.jocm.2024.100521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surge in e-commerce during the past decade has led to dramatic changes in consumer shopping behaviour. The study applies two Generalized Extreme Value (GEV) family models to investigate households' e-shopping demands. The study proposes a model structure to jointly model ordinal-based choice behaviour with choice-makers' latent class membership. Introducing latent class structure with the OGEV formulation accounts for the relationship between choice-makers heterogeneous preferential groups and their ordinal choice outcomes. Furthermore, the study also applies the Ordered General Extreme Value (OGEV)-Negative Binomial (NB) model, capturing the interplay between consumers' in-store shopping demands and online shopping behaviour. The RUM principle inherited within the OGEV-NB model allows econometric valuation of in-store shopping activity explicitly considering households' e-shopping demands. Both models are empirically estimated using a dataset collected in the Greater Toronto Area (GTA), Canada. The empirical findings and behavioural implications are also discussed.</div></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"53 \",\"pages\":\"Article 100521\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534524000538\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534524000538","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

过去十年间,电子商务的迅猛发展导致消费者的购物行为发生了巨大变化。本研究采用两个广义极值(GEV)族模型来研究家庭的电子购物需求。研究提出了一种模型结构,将基于序数的选择行为与选择者的潜在类别成员资格联合建模。在 OGEV 模型中引入潜类结构,解释了选择者的异质偏好群体与其序数选择结果之间的关系。此外,研究还应用了有序一般极值(OGEV)-负二项(NB)模型,以捕捉消费者店内购物需求与网上购物行为之间的相互作用。OGEV-NB 模型所继承的 RUM 原则允许对店内购物活动进行计量经济学估值,明确考虑家庭的电子购物需求。这两个模型都是利用在加拿大大多伦多地区(GTA)收集的数据集进行实证估算的。此外,还讨论了实证研究结果和行为影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling household online shopping and home delivery demand using latent class & ordinal generalized extreme value (GEV) models
The surge in e-commerce during the past decade has led to dramatic changes in consumer shopping behaviour. The study applies two Generalized Extreme Value (GEV) family models to investigate households' e-shopping demands. The study proposes a model structure to jointly model ordinal-based choice behaviour with choice-makers' latent class membership. Introducing latent class structure with the OGEV formulation accounts for the relationship between choice-makers heterogeneous preferential groups and their ordinal choice outcomes. Furthermore, the study also applies the Ordered General Extreme Value (OGEV)-Negative Binomial (NB) model, capturing the interplay between consumers' in-store shopping demands and online shopping behaviour. The RUM principle inherited within the OGEV-NB model allows econometric valuation of in-store shopping activity explicitly considering households' e-shopping demands. Both models are empirically estimated using a dataset collected in the Greater Toronto Area (GTA), Canada. The empirical findings and behavioural implications are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
期刊最新文献
Editorial Board Latent class choice models with an error structure: Investigating potential unobserved associations between latent segmentation and behavior generation Model choice and framing effects: Do discrete choice modeling decisions affect loss aversion estimates? A consistent moment equations for binary probit models with endogenous variables using instrumental variables Transformation-based flexible error structures for choice modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1