不同土地覆盖下土壤异养呼吸作用与土壤水分关系的研究

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2024-09-18 DOI:10.1016/j.soilbio.2024.109593
Nishadini Widanagamage, Eduardo Santos, Charles W. Rice, Andres Patrignani
{"title":"不同土地覆盖下土壤异养呼吸作用与土壤水分关系的研究","authors":"Nishadini Widanagamage,&nbsp;Eduardo Santos,&nbsp;Charles W. Rice,&nbsp;Andres Patrignani","doi":"10.1016/j.soilbio.2024.109593","DOIUrl":null,"url":null,"abstract":"<div><div>The relationship between soil heterotrophic respiration (<em>R</em><sub><em>h</em></sub>) and soil moisture has been often studied using disturbed soil samples and simple gravimetric and volumetric soil moisture indicators. The objective of this study was to investigate the relationship between <em>R</em><sub><em>h</em></sub> and soil moisture in terms of water-filled porosity (WFP), matric potential (<span><math><mrow><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span>), and relative soil gas diffusivity (<span><math><mrow><msub><mi>D</mi><mi>p</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span>) using undisturbed soil cores obtained under different land covers. Soil CO<sub>2</sub> efflux, WFP, and <span><math><mrow><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span> were measured in undisturbed soil samples (250 cm<sup>3</sup>) collected in the 0–5 cm soil layer (without any vegetation or living roots) under laboratory conditions by combining a CO<sub>2</sub> gas analyzer, a scale, and precision mini-tensiometers. For each site and land cover, we also measured soil chemical properties, soil physical properties, and soil microbial composition using phospholipid fatty acid analysis. Grassland soils had the largest total microbial biomass (6275 ng g<sup>−1</sup>), followed by soils from riparian (5327 ng g<sup>−1</sup>), and cropland (2745 ng g<sup>−1</sup>) sites. Bacteria were the dominant group representing 46% (SD = 5%) of the total microbial biomass across all sites and land covers. Maximum <em>R</em><sub>h</sub> was 1.88 (SD = 0.40) μmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup> in grassland, 1.64 (SD = 0.82) μmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup> in riparian, and 0.94 (SD = 0.56) μmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup> in cropland soils. Considering all land cover and soil types, our observations revealed that peak <em>R</em><sub><em>h</em></sub> occurred at mean WFP = 0.81 <span><math><mrow><mo>,</mo><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span> = −6 kPa, and <span><math><mrow><msub><mi>D</mi><mi>p</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> = 0.003. Thus, we recommend avoiding the traditional field capacity definition of −33 kPa for representing peak microbial activity. Water-filled porosity was a more consistent predictor of <em>R</em><sub><em>h</em></sub> than <span><math><mrow><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span> or <span><math><mrow><msub><mi>D</mi><mi>p</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> across soils with contrasting organic matter content, total microbial biomass, soil texture, and soil structure.</div></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"200 ","pages":"Article 109593"},"PeriodicalIF":9.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of soil heterotrophic respiration as a function of soil moisture under different land covers\",\"authors\":\"Nishadini Widanagamage,&nbsp;Eduardo Santos,&nbsp;Charles W. Rice,&nbsp;Andres Patrignani\",\"doi\":\"10.1016/j.soilbio.2024.109593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The relationship between soil heterotrophic respiration (<em>R</em><sub><em>h</em></sub>) and soil moisture has been often studied using disturbed soil samples and simple gravimetric and volumetric soil moisture indicators. The objective of this study was to investigate the relationship between <em>R</em><sub><em>h</em></sub> and soil moisture in terms of water-filled porosity (WFP), matric potential (<span><math><mrow><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span>), and relative soil gas diffusivity (<span><math><mrow><msub><mi>D</mi><mi>p</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span>) using undisturbed soil cores obtained under different land covers. Soil CO<sub>2</sub> efflux, WFP, and <span><math><mrow><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span> were measured in undisturbed soil samples (250 cm<sup>3</sup>) collected in the 0–5 cm soil layer (without any vegetation or living roots) under laboratory conditions by combining a CO<sub>2</sub> gas analyzer, a scale, and precision mini-tensiometers. For each site and land cover, we also measured soil chemical properties, soil physical properties, and soil microbial composition using phospholipid fatty acid analysis. Grassland soils had the largest total microbial biomass (6275 ng g<sup>−1</sup>), followed by soils from riparian (5327 ng g<sup>−1</sup>), and cropland (2745 ng g<sup>−1</sup>) sites. Bacteria were the dominant group representing 46% (SD = 5%) of the total microbial biomass across all sites and land covers. Maximum <em>R</em><sub>h</sub> was 1.88 (SD = 0.40) μmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup> in grassland, 1.64 (SD = 0.82) μmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup> in riparian, and 0.94 (SD = 0.56) μmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup> in cropland soils. Considering all land cover and soil types, our observations revealed that peak <em>R</em><sub><em>h</em></sub> occurred at mean WFP = 0.81 <span><math><mrow><mo>,</mo><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span> = −6 kPa, and <span><math><mrow><msub><mi>D</mi><mi>p</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> = 0.003. Thus, we recommend avoiding the traditional field capacity definition of −33 kPa for representing peak microbial activity. Water-filled porosity was a more consistent predictor of <em>R</em><sub><em>h</em></sub> than <span><math><mrow><msub><mi>Ψ</mi><mi>m</mi></msub></mrow></math></span> or <span><math><mrow><msub><mi>D</mi><mi>p</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> across soils with contrasting organic matter content, total microbial biomass, soil texture, and soil structure.</div></div>\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":\"200 \",\"pages\":\"Article 109593\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038071724002827\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071724002827","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤异养呼吸作用(Rh)与土壤湿度之间的关系通常是通过扰动土壤样本和简单的重量和体积土壤湿度指标来研究的。本研究的目的是利用在不同土地覆盖下获得的未扰动土芯,从充水孔隙度(WFP)、母势(Ψm)和相对土壤气体扩散率(Dp/Do)的角度研究 Rh 与土壤湿度之间的关系。在实验室条件下,结合二氧化碳气体分析仪、秤和精密微型张力计,对采集的 0-5 厘米土层(无任何植被或活根)未扰动土壤样本(250 立方厘米)中的土壤二氧化碳流出量、WFP 和 Ψm 进行了测量。对于每个地点和土地覆盖层,我们还测量了土壤化学性质、土壤物理性质以及利用磷脂脂肪酸分析法测量的土壤微生物组成。草地土壤的微生物总生物量最大(6275 纳克/克-1),其次是河岸土壤(5327 纳克/克-1)和耕地土壤(2745 纳克/克-1)。细菌是主要的微生物群,占所有地点和土地覆盖层微生物生物量总量的 46%(SD = 5%)。草地的最大 Rh 值为 1.88(SD = 0.40)μmol CO2 m-2 s-1,河岸的最大 Rh 值为 1.64(SD = 0.82)μmol CO2 m-2 s-1,耕地土壤的最大 Rh 值为 0.94(SD = 0.56)μmol CO2 m-2 s-1。考虑到所有土地覆被和土壤类型,我们的观察结果表明,Rh 的峰值出现在平均 WFP = 0.81 ,Ψm = -6 kPa 和 Dp/Do = 0.003 时。因此,我们建议不要采用传统的-33 kPa 的实地容量定义来代表微生物活动峰值。在有机质含量、微生物总生物量、土壤质地和土壤结构各不相同的土壤中,充水孔隙度比Ψm 或 Dp/Do 对 Rh 的预测更为一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of soil heterotrophic respiration as a function of soil moisture under different land covers
The relationship between soil heterotrophic respiration (Rh) and soil moisture has been often studied using disturbed soil samples and simple gravimetric and volumetric soil moisture indicators. The objective of this study was to investigate the relationship between Rh and soil moisture in terms of water-filled porosity (WFP), matric potential (Ψm), and relative soil gas diffusivity (Dp/Do) using undisturbed soil cores obtained under different land covers. Soil CO2 efflux, WFP, and Ψm were measured in undisturbed soil samples (250 cm3) collected in the 0–5 cm soil layer (without any vegetation or living roots) under laboratory conditions by combining a CO2 gas analyzer, a scale, and precision mini-tensiometers. For each site and land cover, we also measured soil chemical properties, soil physical properties, and soil microbial composition using phospholipid fatty acid analysis. Grassland soils had the largest total microbial biomass (6275 ng g−1), followed by soils from riparian (5327 ng g−1), and cropland (2745 ng g−1) sites. Bacteria were the dominant group representing 46% (SD = 5%) of the total microbial biomass across all sites and land covers. Maximum Rh was 1.88 (SD = 0.40) μmol CO2 m−2 s−1 in grassland, 1.64 (SD = 0.82) μmol CO2 m−2 s−1 in riparian, and 0.94 (SD = 0.56) μmol CO2 m−2 s−1 in cropland soils. Considering all land cover and soil types, our observations revealed that peak Rh occurred at mean WFP = 0.81 ,Ψm = −6 kPa, and Dp/Do = 0.003. Thus, we recommend avoiding the traditional field capacity definition of −33 kPa for representing peak microbial activity. Water-filled porosity was a more consistent predictor of Rh than Ψm or Dp/Do across soils with contrasting organic matter content, total microbial biomass, soil texture, and soil structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Grassland Degradation-induced Soil Organic Carbon Loss Associated with Micro-food Web Simplification Cropping system modulates the effect of spring drought on ammonia-oxidizing communities Humidity controls soil organic carbon accrual in grassland on the Qinghai–Tibet Plateau Polylactic acid microplastics induced negative priming and improved carbon sequestration via microbial processes in different paddy soils Aeolian dust deposition as a driver of cyanobacterial community structure in biological soil crusts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1