Jingjing He , Fan Yang , Haixu Wang , Xiaojun Sun , Yu Zhu , Yaokun Wang , Xuefei Guan
{"title":"基于物理的声发射能量法,用于复合材料层压板的混合模式冲击损伤预测","authors":"Jingjing He , Fan Yang , Haixu Wang , Xiaojun Sun , Yu Zhu , Yaokun Wang , Xuefei Guan","doi":"10.1016/j.ultras.2024.107490","DOIUrl":null,"url":null,"abstract":"<div><div>In-service composite laminates are susceptible to impact-induced damage, which can substantially reduce its integrity and service life. The damage prediction remains a great challenge due to mixed damage modes and varying damage patterns. This study develops a novel acoustic emission (AE) energy method for predicting damage areas under three typical damage modes. Laboratory testing of composite laminate specimens subject to quasi-static indentation is performed in conjunction with in-situ AE monitoring to acquire AE data. By bridging two sets of energy formulations developed, namely, the one that correlates the damage area and the released strain energy of each damage mode and another that relates the released strain energy to the AE energy, an analytical model for predicting damage areas using AE energy components is derived. Proper signal procedure procedures are established to extract the energy components from AE monitoring data, and numerical and testing data are used to calibrate the model parameters. The effectiveness of the proposed model is further validated by comparing the prediction results of the damage areas with the actual damage areas of specimens tested under different indentation depths. The result indicates that the proposed AE energy method can yield reliable predictions of the damage area under mixed damage modes.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physics-based acoustic emission energy method for mixed-mode impact damage prediction of composite laminates\",\"authors\":\"Jingjing He , Fan Yang , Haixu Wang , Xiaojun Sun , Yu Zhu , Yaokun Wang , Xuefei Guan\",\"doi\":\"10.1016/j.ultras.2024.107490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In-service composite laminates are susceptible to impact-induced damage, which can substantially reduce its integrity and service life. The damage prediction remains a great challenge due to mixed damage modes and varying damage patterns. This study develops a novel acoustic emission (AE) energy method for predicting damage areas under three typical damage modes. Laboratory testing of composite laminate specimens subject to quasi-static indentation is performed in conjunction with in-situ AE monitoring to acquire AE data. By bridging two sets of energy formulations developed, namely, the one that correlates the damage area and the released strain energy of each damage mode and another that relates the released strain energy to the AE energy, an analytical model for predicting damage areas using AE energy components is derived. Proper signal procedure procedures are established to extract the energy components from AE monitoring data, and numerical and testing data are used to calibrate the model parameters. The effectiveness of the proposed model is further validated by comparing the prediction results of the damage areas with the actual damage areas of specimens tested under different indentation depths. The result indicates that the proposed AE energy method can yield reliable predictions of the damage area under mixed damage modes.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002531\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002531","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
A physics-based acoustic emission energy method for mixed-mode impact damage prediction of composite laminates
In-service composite laminates are susceptible to impact-induced damage, which can substantially reduce its integrity and service life. The damage prediction remains a great challenge due to mixed damage modes and varying damage patterns. This study develops a novel acoustic emission (AE) energy method for predicting damage areas under three typical damage modes. Laboratory testing of composite laminate specimens subject to quasi-static indentation is performed in conjunction with in-situ AE monitoring to acquire AE data. By bridging two sets of energy formulations developed, namely, the one that correlates the damage area and the released strain energy of each damage mode and another that relates the released strain energy to the AE energy, an analytical model for predicting damage areas using AE energy components is derived. Proper signal procedure procedures are established to extract the energy components from AE monitoring data, and numerical and testing data are used to calibrate the model parameters. The effectiveness of the proposed model is further validated by comparing the prediction results of the damage areas with the actual damage areas of specimens tested under different indentation depths. The result indicates that the proposed AE energy method can yield reliable predictions of the damage area under mixed damage modes.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.