碳中和目标下的中国数据中心碳排放情景分析

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-09-18 DOI:10.1016/j.ijrefrig.2024.09.017
Feng Zhou , Ruimin Wang , Guoyuan Ma
{"title":"碳中和目标下的中国数据中心碳排放情景分析","authors":"Feng Zhou ,&nbsp;Ruimin Wang ,&nbsp;Guoyuan Ma","doi":"10.1016/j.ijrefrig.2024.09.017","DOIUrl":null,"url":null,"abstract":"<div><div>The low-carbon transformation of data centers is of great significance to achieve the goals of carbon peaking and carbon neutrality. This study compared and analyzed the overall situation of data centers in China. Based on China's CO<sub>2</sub> emission and intensity targets in key years, the four variables of energy efficiency improvement rate, nonfossil energy consumption proportion, negative emission technology intensity, and waste energy utilization rate were introduced, and a net zero emission path model of data centers was established. Using scenario analysis to predict the total CO<sub>2</sub> emissions and emission intensity from 2021 to 2060, three emission reduction path scenarios were obtained. Results showed that the energy consumption of data centers increased gradually, the carbon emissions first increased and then decreased, and the power usage effectiveness (PUE) of the data centers decreased gradually. The carbon peak time of the three scenarios is 2030, and the time for carbon neutrality is 2055, 2053, and 2051 in three scenarios. The data center industry should further improve the energy efficiency utilization rate, increase the proportion of nonfossil energy consumption, strengthen the technological innovation of carbon capture and storage, enhance the level of carbon sink, and optimize the utilization rate of waste energy.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 648-661"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon emission scenario analysis of data centers in China under the carbon neutrality target\",\"authors\":\"Feng Zhou ,&nbsp;Ruimin Wang ,&nbsp;Guoyuan Ma\",\"doi\":\"10.1016/j.ijrefrig.2024.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The low-carbon transformation of data centers is of great significance to achieve the goals of carbon peaking and carbon neutrality. This study compared and analyzed the overall situation of data centers in China. Based on China's CO<sub>2</sub> emission and intensity targets in key years, the four variables of energy efficiency improvement rate, nonfossil energy consumption proportion, negative emission technology intensity, and waste energy utilization rate were introduced, and a net zero emission path model of data centers was established. Using scenario analysis to predict the total CO<sub>2</sub> emissions and emission intensity from 2021 to 2060, three emission reduction path scenarios were obtained. Results showed that the energy consumption of data centers increased gradually, the carbon emissions first increased and then decreased, and the power usage effectiveness (PUE) of the data centers decreased gradually. The carbon peak time of the three scenarios is 2030, and the time for carbon neutrality is 2055, 2053, and 2051 in three scenarios. The data center industry should further improve the energy efficiency utilization rate, increase the proportion of nonfossil energy consumption, strengthen the technological innovation of carbon capture and storage, enhance the level of carbon sink, and optimize the utilization rate of waste energy.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"168 \",\"pages\":\"Pages 648-661\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724003293\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003293","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

数据中心的低碳转型对于实现碳调峰和碳中和目标具有重要意义。本研究对比分析了中国数据中心的整体情况。根据我国重点年份的二氧化碳排放及强度目标,引入能效提升率、非化石能源消费比重、负排放技术强度、废弃能源利用率四个变量,建立了数据中心净零排放路径模型。通过情景分析预测 2021 年至 2060 年的二氧化碳排放总量和排放强度,得到三种减排路径情景。结果表明,数据中心的能耗逐渐增加,碳排放量先增加后减少,数据中心的电力使用效率(PUE)逐渐降低。三种情景的碳峰值时间为 2030 年,三种情景的碳中和时间分别为 2055 年、2053 年和 2051 年。数据中心行业应进一步提高能效利用率,提高非化石能源消费比重,加强碳捕集与封存技术创新,提升碳汇水平,优化废弃能源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon emission scenario analysis of data centers in China under the carbon neutrality target
The low-carbon transformation of data centers is of great significance to achieve the goals of carbon peaking and carbon neutrality. This study compared and analyzed the overall situation of data centers in China. Based on China's CO2 emission and intensity targets in key years, the four variables of energy efficiency improvement rate, nonfossil energy consumption proportion, negative emission technology intensity, and waste energy utilization rate were introduced, and a net zero emission path model of data centers was established. Using scenario analysis to predict the total CO2 emissions and emission intensity from 2021 to 2060, three emission reduction path scenarios were obtained. Results showed that the energy consumption of data centers increased gradually, the carbon emissions first increased and then decreased, and the power usage effectiveness (PUE) of the data centers decreased gradually. The carbon peak time of the three scenarios is 2030, and the time for carbon neutrality is 2055, 2053, and 2051 in three scenarios. The data center industry should further improve the energy efficiency utilization rate, increase the proportion of nonfossil energy consumption, strengthen the technological innovation of carbon capture and storage, enhance the level of carbon sink, and optimize the utilization rate of waste energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
期刊最新文献
Editorial Board Data-enhanced convolutional network based on air conditioning system start/stop time prediction Start-up investigation and heat transfer enhancement analysis of a loop thermosyphon with biomimetic honeycomb-channel evaporator Study on off-grid performance and economic viability of photovoltaic energy storage refrigeration systems Thermodynamic and economic analysis of a novel solar-assisted vapor injection ejector-enhanced cycle for building heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1