用于低分辨率 LIBS 光谱元素定量的新型特征筛选算法

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-10-09 DOI:10.1016/j.ijleo.2024.172069
Yunfeng Bi , Xiaohan Bai , Chao Li , Tao Zhang , Zhongyi Bao , Meili Guo , Man Wang , Zhengjiang Ding
{"title":"用于低分辨率 LIBS 光谱元素定量的新型特征筛选算法","authors":"Yunfeng Bi ,&nbsp;Xiaohan Bai ,&nbsp;Chao Li ,&nbsp;Tao Zhang ,&nbsp;Zhongyi Bao ,&nbsp;Meili Guo ,&nbsp;Man Wang ,&nbsp;Zhengjiang Ding","doi":"10.1016/j.ijleo.2024.172069","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative approach that integrates Laser-Induced Breakdown Spectroscopy (LIBS) with chemometrics for the quantitative analysis of Si, Ca, Al, and Mg in geological samples. Given the spectral redundancy in low-resolution LIBS devices, the study employs pre-processing techniques, such as AirPLS, Wavelet Transform (WT), and normalization to mitigate spectral noise. Enhanced feature threshold searching is achieved by incorporating SHapley Additive exPlanations (SHAP) and LightGBM into the Boruta algorithm, substantially improving quantitative analysis models based on Support Vector Regression (SVR) and Partial Least Squares Regression (PLSR). The modified Boruta-SVR model demonstrated remarkable robustness, with <em>R<sup>2</sup></em> values of 0.9862, 0.9873, 0.9882, and 0.9916, and <em>RMSE</em> values of 0.8099, 0.324, 0.1378, and 0.2382, respectively, for Si, Ca, Al, and Mg. The results confirm that the Boruta-based feature selection method, when applied to low-resolution LIBS spectra, outperforms traditional methods, capturing unique sample features under mixed spectral peak conditions, thereby enhancing the robustness of quantitative analysis models.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"317 ","pages":"Article 172069"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel feature screening algorithm for low-resolution LIBS spectrum elemental quantification\",\"authors\":\"Yunfeng Bi ,&nbsp;Xiaohan Bai ,&nbsp;Chao Li ,&nbsp;Tao Zhang ,&nbsp;Zhongyi Bao ,&nbsp;Meili Guo ,&nbsp;Man Wang ,&nbsp;Zhengjiang Ding\",\"doi\":\"10.1016/j.ijleo.2024.172069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an innovative approach that integrates Laser-Induced Breakdown Spectroscopy (LIBS) with chemometrics for the quantitative analysis of Si, Ca, Al, and Mg in geological samples. Given the spectral redundancy in low-resolution LIBS devices, the study employs pre-processing techniques, such as AirPLS, Wavelet Transform (WT), and normalization to mitigate spectral noise. Enhanced feature threshold searching is achieved by incorporating SHapley Additive exPlanations (SHAP) and LightGBM into the Boruta algorithm, substantially improving quantitative analysis models based on Support Vector Regression (SVR) and Partial Least Squares Regression (PLSR). The modified Boruta-SVR model demonstrated remarkable robustness, with <em>R<sup>2</sup></em> values of 0.9862, 0.9873, 0.9882, and 0.9916, and <em>RMSE</em> values of 0.8099, 0.324, 0.1378, and 0.2382, respectively, for Si, Ca, Al, and Mg. The results confirm that the Boruta-based feature selection method, when applied to low-resolution LIBS spectra, outperforms traditional methods, capturing unique sample features under mixed spectral peak conditions, thereby enhancing the robustness of quantitative analysis models.</div></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"317 \",\"pages\":\"Article 172069\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004686\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004686","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新方法,将激光诱导击穿光谱(LIBS)与化学计量学相结合,对地质样品中的硅、钙、铝和镁进行定量分析。鉴于低分辨率激光诱导击穿光谱仪存在光谱冗余,该研究采用了 AirPLS、小波变换 (WT) 和归一化等预处理技术来减轻光谱噪声。通过将 SHapley Additive exPlanations(SHAP)和 LightGBM 纳入 Boruta 算法,实现了增强的特征阈值搜索,大大改进了基于支持向量回归(SVR)和部分最小二乘法回归(PLSR)的定量分析模型。改进后的 Boruta-SVR 模型具有显著的鲁棒性,对 Si、Ca、Al 和 Mg 的 R2 值分别为 0.9862、0.9873、0.9882 和 0.9916,RMSE 值分别为 0.8099、0.324、0.1378 和 0.2382。结果证实,基于 Boruta 的特征选择方法在应用于低分辨率 LIBS 光谱时优于传统方法,能捕捉混合光谱峰条件下独特的样品特征,从而提高定量分析模型的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel feature screening algorithm for low-resolution LIBS spectrum elemental quantification
This study presents an innovative approach that integrates Laser-Induced Breakdown Spectroscopy (LIBS) with chemometrics for the quantitative analysis of Si, Ca, Al, and Mg in geological samples. Given the spectral redundancy in low-resolution LIBS devices, the study employs pre-processing techniques, such as AirPLS, Wavelet Transform (WT), and normalization to mitigate spectral noise. Enhanced feature threshold searching is achieved by incorporating SHapley Additive exPlanations (SHAP) and LightGBM into the Boruta algorithm, substantially improving quantitative analysis models based on Support Vector Regression (SVR) and Partial Least Squares Regression (PLSR). The modified Boruta-SVR model demonstrated remarkable robustness, with R2 values of 0.9862, 0.9873, 0.9882, and 0.9916, and RMSE values of 0.8099, 0.324, 0.1378, and 0.2382, respectively, for Si, Ca, Al, and Mg. The results confirm that the Boruta-based feature selection method, when applied to low-resolution LIBS spectra, outperforms traditional methods, capturing unique sample features under mixed spectral peak conditions, thereby enhancing the robustness of quantitative analysis models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Weak mode locking dynamics in a thulium-doped fiber laser Design of cascaded diffractive optical elements generating different intensity distributions at several operating wavelengths Whispery gallery mode plasmonic biosensor based on intensifying graphene layer Chemometric advances in COD analysis: Overcoming turbidity interference with a Hybrid PLS-ANN approach A closely spaced dual-band dual-sense linear-to-circular polarization converter for X-band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1