{"title":"乙醇蒸汽辅助物理气相沉积合成的新型羽毛状纳米多孔镁","authors":"Han Wang , Xiping Song , Jingru Liu , Li You","doi":"10.1016/j.jcrysgro.2024.127944","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoporous magnesium exhibits outstanding performance in hydrogen absorption and desorption, rendering it a promising candidate for hydrogen storage applications. Nevertheless, there is limited discussion on the preparation method and growth mechanism of nano-porous magnesium. In this paper, a novel nanoporous magnesium material characterized by a feathery morphology was successfully synthesized at 823 K for 2 h under a vacuum pressure of 3 Pa, assisted by ethanol vapor through the physical vapor deposition method. The ethanol vapor was identified as the crucial factor in the synthesis of the feathery nanoporous magnesium. A vacancy-assisted formation mechanism is proposed to elucidate the creation of feathery nanoporous magnesium, whereby the ethanol vapor occupies specific positions within the magnesium vapor, resulting in the formation of nano and submicron pores.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"649 ","pages":"Article 127944"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel feathery nanoporous magnesium synthesized by ethanol vapor assisted physical vapor deposition\",\"authors\":\"Han Wang , Xiping Song , Jingru Liu , Li You\",\"doi\":\"10.1016/j.jcrysgro.2024.127944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanoporous magnesium exhibits outstanding performance in hydrogen absorption and desorption, rendering it a promising candidate for hydrogen storage applications. Nevertheless, there is limited discussion on the preparation method and growth mechanism of nano-porous magnesium. In this paper, a novel nanoporous magnesium material characterized by a feathery morphology was successfully synthesized at 823 K for 2 h under a vacuum pressure of 3 Pa, assisted by ethanol vapor through the physical vapor deposition method. The ethanol vapor was identified as the crucial factor in the synthesis of the feathery nanoporous magnesium. A vacancy-assisted formation mechanism is proposed to elucidate the creation of feathery nanoporous magnesium, whereby the ethanol vapor occupies specific positions within the magnesium vapor, resulting in the formation of nano and submicron pores.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"649 \",\"pages\":\"Article 127944\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824003828\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824003828","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
纳米多孔镁在氢吸收和解吸方面表现出卓越的性能,使其成为氢储存应用的理想候选材料。然而,关于纳米多孔镁的制备方法和生长机理的讨论还很有限。本文通过物理气相沉积法,在乙醇蒸汽的辅助下,于 823 K、3 Pa 真空压力下 2 小时成功合成了一种新型纳米多孔镁材料,其特征为羽毛状形貌。乙醇蒸汽被认为是合成羽毛状纳米多孔镁的关键因素。乙醇蒸气占据了镁蒸气中的特定位置,从而形成了纳米和亚微米孔隙。
A novel feathery nanoporous magnesium synthesized by ethanol vapor assisted physical vapor deposition
Nanoporous magnesium exhibits outstanding performance in hydrogen absorption and desorption, rendering it a promising candidate for hydrogen storage applications. Nevertheless, there is limited discussion on the preparation method and growth mechanism of nano-porous magnesium. In this paper, a novel nanoporous magnesium material characterized by a feathery morphology was successfully synthesized at 823 K for 2 h under a vacuum pressure of 3 Pa, assisted by ethanol vapor through the physical vapor deposition method. The ethanol vapor was identified as the crucial factor in the synthesis of the feathery nanoporous magnesium. A vacancy-assisted formation mechanism is proposed to elucidate the creation of feathery nanoporous magnesium, whereby the ethanol vapor occupies specific positions within the magnesium vapor, resulting in the formation of nano and submicron pores.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.