Tuo Wang , Yating Zhou , Yuxi Song , Xiaoming Chen , Wei Liu
{"title":"超高硬度 Co-Cr-Mo-Nb-B 高温非晶合金涂层的制备与性能","authors":"Tuo Wang , Yating Zhou , Yuxi Song , Xiaoming Chen , Wei Liu","doi":"10.1016/j.surfcoat.2024.131474","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a high temperature and amorphous alloy coating of Co<sub>26</sub>Cr<sub>26</sub>Mo<sub>26</sub>Nb<sub>7</sub>B<sub>15</sub> was prepared by high-velocity oxy-fuel spraying. The phase structure, thermodynamic properties, hardness, friction and wear behaviors, and corrosion behavior and its mechanism were studied. The results showed that the glass transition temperature of the coating reached to 1058 K, and the hardness was as high as 1589.4 HV. The amorphous alloy coating of Co<sub>26</sub>Cr<sub>26</sub>Mo<sub>26</sub>Nb<sub>7</sub>B<sub>15</sub> exhibited excellent wear resistance. Its friction coefficient was only 0.1152, which was about 25 % of 316 stainless steel, and the wear volume was only 0.1338 mm<sup>3</sup>. Additionally, the coating presented excellent corrosion resistance in 1 M hydrochloric acid solution, with the corrosion current density of 1.04 × 10<sup>−5</sup> A·cm<sup>−2</sup>, and corrosion voltage of −0.32 V vs SCE.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131474"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and properties of ultra-high hardness Co-Cr-Mo-Nb-B high-temperature amorphous alloy coating\",\"authors\":\"Tuo Wang , Yating Zhou , Yuxi Song , Xiaoming Chen , Wei Liu\",\"doi\":\"10.1016/j.surfcoat.2024.131474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a high temperature and amorphous alloy coating of Co<sub>26</sub>Cr<sub>26</sub>Mo<sub>26</sub>Nb<sub>7</sub>B<sub>15</sub> was prepared by high-velocity oxy-fuel spraying. The phase structure, thermodynamic properties, hardness, friction and wear behaviors, and corrosion behavior and its mechanism were studied. The results showed that the glass transition temperature of the coating reached to 1058 K, and the hardness was as high as 1589.4 HV. The amorphous alloy coating of Co<sub>26</sub>Cr<sub>26</sub>Mo<sub>26</sub>Nb<sub>7</sub>B<sub>15</sub> exhibited excellent wear resistance. Its friction coefficient was only 0.1152, which was about 25 % of 316 stainless steel, and the wear volume was only 0.1338 mm<sup>3</sup>. Additionally, the coating presented excellent corrosion resistance in 1 M hydrochloric acid solution, with the corrosion current density of 1.04 × 10<sup>−5</sup> A·cm<sup>−2</sup>, and corrosion voltage of −0.32 V vs SCE.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"494 \",\"pages\":\"Article 131474\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224011058\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011058","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
摘要
本文采用高速纯氧喷涂技术制备了 Co26Cr26Mo26Nb7B15 高温非晶合金涂层。研究了涂层的相结构、热力学性质、硬度、摩擦磨损行为、腐蚀行为及其机理。结果表明,涂层的玻璃化转变温度达到 1058 K,硬度高达 1589.4 HV。Co26Cr26Mo26Nb7B15 非晶合金涂层具有优异的耐磨性。其摩擦系数仅为 0.1152,约为 316 不锈钢的 25%,磨损体积仅为 0.1338 立方毫米。此外,该涂层在 1 M 盐酸溶液中具有优异的耐腐蚀性,腐蚀电流密度为 1.04 × 10-5 A-cm-2,腐蚀电压为 -0.32 V vs SCE。
Preparation and properties of ultra-high hardness Co-Cr-Mo-Nb-B high-temperature amorphous alloy coating
In this paper, a high temperature and amorphous alloy coating of Co26Cr26Mo26Nb7B15 was prepared by high-velocity oxy-fuel spraying. The phase structure, thermodynamic properties, hardness, friction and wear behaviors, and corrosion behavior and its mechanism were studied. The results showed that the glass transition temperature of the coating reached to 1058 K, and the hardness was as high as 1589.4 HV. The amorphous alloy coating of Co26Cr26Mo26Nb7B15 exhibited excellent wear resistance. Its friction coefficient was only 0.1152, which was about 25 % of 316 stainless steel, and the wear volume was only 0.1338 mm3. Additionally, the coating presented excellent corrosion resistance in 1 M hydrochloric acid solution, with the corrosion current density of 1.04 × 10−5 A·cm−2, and corrosion voltage of −0.32 V vs SCE.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.