使用 1 × 4 MEMS 光开关的基于 AWG 的多通道 FBG 检测系统

IF 2.6 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical Fiber Technology Pub Date : 2024-10-15 DOI:10.1016/j.yofte.2024.104004
Ran Xu , Pei Yuan , Yiyao Yang , Bingxiang Li , Jinlei Huang , Qi Xu , Qijia Miao , Lianqing Zhu
{"title":"使用 1 × 4 MEMS 光开关的基于 AWG 的多通道 FBG 检测系统","authors":"Ran Xu ,&nbsp;Pei Yuan ,&nbsp;Yiyao Yang ,&nbsp;Bingxiang Li ,&nbsp;Jinlei Huang ,&nbsp;Qi Xu ,&nbsp;Qijia Miao ,&nbsp;Lianqing Zhu","doi":"10.1016/j.yofte.2024.104004","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber Bragg grating (FBG) sensors have been widely used in various fields. In order to further multiplex FBG sensors, multi-channel interrogation systems have been widely studied. In this paper, a multi-channel AWG-based FBG interrogation system using a 1 × 4 MEMS optical switch is proposed. We simulate, design, and fabricate a 32-channel AWG based on silica planar lightwave circuit (PLC), and test the spectrum performance of the AWG. The test results show that the AWG has a good transmission spectrum with an average 3-dB bandwidth of 2.29 nm, an insertion loss of 2.52 dB to 3.95 dB, and a non-adjacent channel crosstalk of –23.06 dB. A temperature experiment is conducted on the multi-channel AWG-based FBG interrogation system. According to the experimental results, the multi-channel FBG AWG-based interrogation system achieves an accuracy within 20 pm, interrogation stability of <span><math><mo>±</mo><mspace></mspace><mn>1</mn><mo>.</mo><mn>07</mn></math></span> pm, sensitivity of about 10 pm/°C, a correlation coefficient of about 0.9982 with a deviation within <span><math><mo>±</mo></math></span> 0.002, excellent linearity, and the ability to interrogate 64 FBGs simultaneously.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"88 ","pages":"Article 104004"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-channel AWG-based FBG interrogation system using a 1 × 4 MEMS optical switch\",\"authors\":\"Ran Xu ,&nbsp;Pei Yuan ,&nbsp;Yiyao Yang ,&nbsp;Bingxiang Li ,&nbsp;Jinlei Huang ,&nbsp;Qi Xu ,&nbsp;Qijia Miao ,&nbsp;Lianqing Zhu\",\"doi\":\"10.1016/j.yofte.2024.104004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fiber Bragg grating (FBG) sensors have been widely used in various fields. In order to further multiplex FBG sensors, multi-channel interrogation systems have been widely studied. In this paper, a multi-channel AWG-based FBG interrogation system using a 1 × 4 MEMS optical switch is proposed. We simulate, design, and fabricate a 32-channel AWG based on silica planar lightwave circuit (PLC), and test the spectrum performance of the AWG. The test results show that the AWG has a good transmission spectrum with an average 3-dB bandwidth of 2.29 nm, an insertion loss of 2.52 dB to 3.95 dB, and a non-adjacent channel crosstalk of –23.06 dB. A temperature experiment is conducted on the multi-channel AWG-based FBG interrogation system. According to the experimental results, the multi-channel FBG AWG-based interrogation system achieves an accuracy within 20 pm, interrogation stability of <span><math><mo>±</mo><mspace></mspace><mn>1</mn><mo>.</mo><mn>07</mn></math></span> pm, sensitivity of about 10 pm/°C, a correlation coefficient of about 0.9982 with a deviation within <span><math><mo>±</mo></math></span> 0.002, excellent linearity, and the ability to interrogate 64 FBGs simultaneously.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"88 \",\"pages\":\"Article 104004\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520024003493\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003493","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光纤布拉格光栅(FBG)传感器已广泛应用于各个领域。为了进一步复用 FBG 传感器,人们对多通道询问系统进行了广泛研究。本文提出了一种使用 1 × 4 MEMS 光学开关的基于 AWG 的多通道 FBG 询问系统。我们模拟、设计和制造了基于硅平面光波电路(PLC)的 32 通道 AWG,并测试了 AWG 的光谱性能。测试结果表明,该 AWG 具有良好的传输频谱,平均 3 dB 带宽为 2.29 nm,插入损耗为 2.52 dB 至 3.95 dB,非相邻信道串扰为 -23.06 dB。对基于 AWG 的多通道 FBG 检测系统进行了温度实验。根据实验结果,基于 AWG 的多通道 FBG 询问系统实现了 20 pm 以内的精确度、±1.07 pm 的询问稳定性、约 10 pm/°C 的灵敏度、约 0.9982 的相关系数(偏差在 ± 0.002 以内)、出色的线性度以及同时询问 64 个 FBG 的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-channel AWG-based FBG interrogation system using a 1 × 4 MEMS optical switch
Fiber Bragg grating (FBG) sensors have been widely used in various fields. In order to further multiplex FBG sensors, multi-channel interrogation systems have been widely studied. In this paper, a multi-channel AWG-based FBG interrogation system using a 1 × 4 MEMS optical switch is proposed. We simulate, design, and fabricate a 32-channel AWG based on silica planar lightwave circuit (PLC), and test the spectrum performance of the AWG. The test results show that the AWG has a good transmission spectrum with an average 3-dB bandwidth of 2.29 nm, an insertion loss of 2.52 dB to 3.95 dB, and a non-adjacent channel crosstalk of –23.06 dB. A temperature experiment is conducted on the multi-channel AWG-based FBG interrogation system. According to the experimental results, the multi-channel FBG AWG-based interrogation system achieves an accuracy within 20 pm, interrogation stability of ±1.07 pm, sensitivity of about 10 pm/°C, a correlation coefficient of about 0.9982 with a deviation within ± 0.002, excellent linearity, and the ability to interrogate 64 FBGs simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
期刊最新文献
Editorial Board Corrigendum to “Six-dimensional geometrically shaped constellation based on regular hexahedral structure for IM/DD system” [Opt. Fiber Technol. 86 (2024) 103842] Machine learning model based on the time domain regular perturbation-based theory for performance estimation in arbitrary heterogeneous optical links Spectral peak filtering using nonlinear polarization interferometer based on polarization maintaining fiber Quick fabrication method of a thermally expanded core in polarization-maintaining fibers using CO2 laser and fiber rotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1