{"title":"基于竞争的生态群落中的传递性和非传递性结构","authors":"John Vandermeer","doi":"10.1016/j.ecocom.2024.101103","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the classical idea that no two species can occupy the same niche, ecological communities are frequently assumed to be structured according to the rules of interspecific competition, based on the intuition provided by the Lotka/Volterra competition equations in two dimensions. It has been noted that when three or more species are involved, the usual tacit assumption that all competition is transitive may be violated. Intransitive loops change some of the emergent principles of the competition-based framework of community structure. Since the intransitivity is oscillatory, the convenient stable equilibrium approach to communities is altered and oscillatory behavior of the system needs to be acknowledged. It is likely that real communities, especially if they are relatively large, will contain one or more intransitive structures, along with normal transitivities. Here we examine some theoretical constructs that emanate from the joint consideration of intransitive and transitive structures co-occurring in an ecological community.</div></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"60 ","pages":"Article 101103"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transitive and intransitive structures in competition-based ecological communities\",\"authors\":\"John Vandermeer\",\"doi\":\"10.1016/j.ecocom.2024.101103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the classical idea that no two species can occupy the same niche, ecological communities are frequently assumed to be structured according to the rules of interspecific competition, based on the intuition provided by the Lotka/Volterra competition equations in two dimensions. It has been noted that when three or more species are involved, the usual tacit assumption that all competition is transitive may be violated. Intransitive loops change some of the emergent principles of the competition-based framework of community structure. Since the intransitivity is oscillatory, the convenient stable equilibrium approach to communities is altered and oscillatory behavior of the system needs to be acknowledged. It is likely that real communities, especially if they are relatively large, will contain one or more intransitive structures, along with normal transitivities. Here we examine some theoretical constructs that emanate from the joint consideration of intransitive and transitive structures co-occurring in an ecological community.</div></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"60 \",\"pages\":\"Article 101103\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X2400031X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X2400031X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Transitive and intransitive structures in competition-based ecological communities
Based on the classical idea that no two species can occupy the same niche, ecological communities are frequently assumed to be structured according to the rules of interspecific competition, based on the intuition provided by the Lotka/Volterra competition equations in two dimensions. It has been noted that when three or more species are involved, the usual tacit assumption that all competition is transitive may be violated. Intransitive loops change some of the emergent principles of the competition-based framework of community structure. Since the intransitivity is oscillatory, the convenient stable equilibrium approach to communities is altered and oscillatory behavior of the system needs to be acknowledged. It is likely that real communities, especially if they are relatively large, will contain one or more intransitive structures, along with normal transitivities. Here we examine some theoretical constructs that emanate from the joint consideration of intransitive and transitive structures co-occurring in an ecological community.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity