{"title":"时间敏感型飞行任务的轨道会合制导战略","authors":"Tian Liao, Xinlong Chen, Jitang Guo, Shunli Li","doi":"10.1007/s42423-024-00164-0","DOIUrl":null,"url":null,"abstract":"<div><p>A fixed-time orbital rendezvous guidance strategy was proposed to meet the requirements of the time-sensitive pursuit-capture game mission. A key problem of fixed-time orbit rendezvous is the design of deceleration guidance strategy and the choice of transfer time. In order to solve the deceleration guidance problem under limited thrust, a displacement formula under constant rocket thrust is proposed. Basing on the formula, a deceleration guidance strategy of \"pulse correction, deceleration condition, inverse-relative-velocity deceleration\" was designed so that the spacecraft can meet the terminal position constraint. Basing on the formula, a deceleration guidance strategy of \"pulse correction, deceleration condition, inverse-relative-velocity deceleration\" was designed so that the spacecraft can meet the terminal position constraint. For the mission time delay caused by deceleration process, a differential correction method was designed based on the displacement formula, which can obtain the Lambert transfer time corresponding to a given mission time. With the proposed method, the mission time error is reduced less than 1 s.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"7 2","pages":"89 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital Rendezvous Guidance Strategy for Time-Sensitive Missions\",\"authors\":\"Tian Liao, Xinlong Chen, Jitang Guo, Shunli Li\",\"doi\":\"10.1007/s42423-024-00164-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A fixed-time orbital rendezvous guidance strategy was proposed to meet the requirements of the time-sensitive pursuit-capture game mission. A key problem of fixed-time orbit rendezvous is the design of deceleration guidance strategy and the choice of transfer time. In order to solve the deceleration guidance problem under limited thrust, a displacement formula under constant rocket thrust is proposed. Basing on the formula, a deceleration guidance strategy of \\\"pulse correction, deceleration condition, inverse-relative-velocity deceleration\\\" was designed so that the spacecraft can meet the terminal position constraint. Basing on the formula, a deceleration guidance strategy of \\\"pulse correction, deceleration condition, inverse-relative-velocity deceleration\\\" was designed so that the spacecraft can meet the terminal position constraint. For the mission time delay caused by deceleration process, a differential correction method was designed based on the displacement formula, which can obtain the Lambert transfer time corresponding to a given mission time. With the proposed method, the mission time error is reduced less than 1 s.</p></div>\",\"PeriodicalId\":100039,\"journal\":{\"name\":\"Advances in Astronautics Science and Technology\",\"volume\":\"7 2\",\"pages\":\"89 - 100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronautics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42423-024-00164-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-024-00164-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Orbital Rendezvous Guidance Strategy for Time-Sensitive Missions
A fixed-time orbital rendezvous guidance strategy was proposed to meet the requirements of the time-sensitive pursuit-capture game mission. A key problem of fixed-time orbit rendezvous is the design of deceleration guidance strategy and the choice of transfer time. In order to solve the deceleration guidance problem under limited thrust, a displacement formula under constant rocket thrust is proposed. Basing on the formula, a deceleration guidance strategy of "pulse correction, deceleration condition, inverse-relative-velocity deceleration" was designed so that the spacecraft can meet the terminal position constraint. Basing on the formula, a deceleration guidance strategy of "pulse correction, deceleration condition, inverse-relative-velocity deceleration" was designed so that the spacecraft can meet the terminal position constraint. For the mission time delay caused by deceleration process, a differential correction method was designed based on the displacement formula, which can obtain the Lambert transfer time corresponding to a given mission time. With the proposed method, the mission time error is reduced less than 1 s.