量子稳定器代码的容错双环连接模式

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2024-10-17 DOI:10.1140/epjqt/s40507-024-00278-2
Chao Du, Zhi Ma, Yiting Liu, Hong Wang, Yangyang Fei
{"title":"量子稳定器代码的容错双环连接模式","authors":"Chao Du,&nbsp;Zhi Ma,&nbsp;Yiting Liu,&nbsp;Hong Wang,&nbsp;Yangyang Fei","doi":"10.1140/epjqt/s40507-024-00278-2","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the circular connectivity pattern has been presented for a class of stabilizer quantum error correction codes. The circular connectivity pattern for such a class of stabilizer codes can be implemented in a resource-efficient manner using a single ancilla and native two-qubit Controlled-Not-Swap gates (CNS) gates, which may be interesting for demonstrating error-correction codes with superconducting quantum processors. However, one concern is that this scheme is not fault-tolerant. And it might not apply to the Calderbank-Shor-Steane (CSS) codes. In this paper, we present a fault-tolerant version of the circular connectivity pattern, named the double-circular connectivity pattern. This pattern is an implementation for syndrome-measurement circuits with a flagged error correction scheme for stabilizer codes. We illustrate that this pattern is available for Steane code (a CSS code), Laflamme’s five-qubit code, and Shor’s nine-qubit code. For Laflamme’s five-qubit code and Shor’s nine-qubit code, the pattern has the property that it uses only native two-qubit CNS gates, which are more efficient in the superconducting quantum platform.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00278-2","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerant double-circular connectivity pattern for quantum stabilizer codes\",\"authors\":\"Chao Du,&nbsp;Zhi Ma,&nbsp;Yiting Liu,&nbsp;Hong Wang,&nbsp;Yangyang Fei\",\"doi\":\"10.1140/epjqt/s40507-024-00278-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, the circular connectivity pattern has been presented for a class of stabilizer quantum error correction codes. The circular connectivity pattern for such a class of stabilizer codes can be implemented in a resource-efficient manner using a single ancilla and native two-qubit Controlled-Not-Swap gates (CNS) gates, which may be interesting for demonstrating error-correction codes with superconducting quantum processors. However, one concern is that this scheme is not fault-tolerant. And it might not apply to the Calderbank-Shor-Steane (CSS) codes. In this paper, we present a fault-tolerant version of the circular connectivity pattern, named the double-circular connectivity pattern. This pattern is an implementation for syndrome-measurement circuits with a flagged error correction scheme for stabilizer codes. We illustrate that this pattern is available for Steane code (a CSS code), Laflamme’s five-qubit code, and Shor’s nine-qubit code. For Laflamme’s five-qubit code and Shor’s nine-qubit code, the pattern has the property that it uses only native two-qubit CNS gates, which are more efficient in the superconducting quantum platform.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00278-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00278-2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00278-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,有人提出了一类稳定器量子纠错码的循环连接模式。这类稳定器纠错码的环形连通模式可以通过使用单个ancilla和本地双量子比特受控不交换门(CNS)以节省资源的方式实现,这对于用超导量子处理器演示纠错码可能很有意义。然而,令人担忧的是,这种方案不具有容错性。而且它可能不适用于 Calderbank-Shor-Steane (CSS) 代码。在本文中,我们提出了圆形连接模式的容错版本,命名为双圆形连接模式。这种模式是综合征测量电路的一种实现方式,具有稳定器代码的标记纠错方案。我们举例说明,这种模式适用于 Steane 码(一种 CSS 码)、Laflamme 的五量子比特码和 Shor 的九量子比特码。对于 Laflamme 的五量子比特码和 Shor 的九量子比特码,该模式具有只使用本地二量子比特 CNS 门的特性,这在超导量子平台中更为高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault-tolerant double-circular connectivity pattern for quantum stabilizer codes

Recently, the circular connectivity pattern has been presented for a class of stabilizer quantum error correction codes. The circular connectivity pattern for such a class of stabilizer codes can be implemented in a resource-efficient manner using a single ancilla and native two-qubit Controlled-Not-Swap gates (CNS) gates, which may be interesting for demonstrating error-correction codes with superconducting quantum processors. However, one concern is that this scheme is not fault-tolerant. And it might not apply to the Calderbank-Shor-Steane (CSS) codes. In this paper, we present a fault-tolerant version of the circular connectivity pattern, named the double-circular connectivity pattern. This pattern is an implementation for syndrome-measurement circuits with a flagged error correction scheme for stabilizer codes. We illustrate that this pattern is available for Steane code (a CSS code), Laflamme’s five-qubit code, and Shor’s nine-qubit code. For Laflamme’s five-qubit code and Shor’s nine-qubit code, the pattern has the property that it uses only native two-qubit CNS gates, which are more efficient in the superconducting quantum platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
Correction: Keep it secret, keep it safe: teaching quantum key distribution in high school Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search Fault-tolerant double-circular connectivity pattern for quantum stabilizer codes Estimating the link budget of satellite-based Quantum Key Distribution (QKD) for uplink transmission through the atmosphere Reflection and transmission amplitudes in a digital quantum simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1