{"title":"设计香精香料传输系统的设计质量视角:技术现状与未来探索","authors":"Sumant, Subh Naman, Sanyam Sharma, Ashish Baldi","doi":"10.1002/ffj.3807","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Quality by design (QbD) is a systematic method for the development of product and process design to ensure quality and efficacy. In the fragrance and flavour industry, the design of delivery systems plays a crucial role in the overall product quality and consumer acceptance. This article analyses the current state-of-the-art and future explorations from QbD perspective for designing appropriate delivery systems for flavour and fragrance applications. The QbD approach for delivery system design involves classifying critical quality attributes of the product and process, defining the critical process parameters and developing a design space to ensure product quality within the specified range. In addition, risk assessment and mitigation strategies are also a component of the QbD techniques, which ensure the robustness of the delivery system. Various delivery systems such as microencapsulation, nanoencapsulation, solid lipid nanoparticles and liposomes have been explored in the flavour and fragrance industry. These delivery systems provide controlled release, protection, and enhanced stability of the active ingredients. However, challenges such as scale-up, reproducibility, and cost-effectiveness need to be addressed to ensure their commercial viability. In conclusion, the QbD outlook provides a comprehensive framework for the design of carrier system for fragrance and flavour applications. The incorporation of risk assessment and mitigation strategies ensures the robustness of the delivery system, and the future exploration of advanced technologies may further enhance the efficiency and effectiveness of the QbD approach.</p>\n </div>","PeriodicalId":170,"journal":{"name":"Flavour and Fragrance Journal","volume":"39 6","pages":"336-361"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality by Design Perspectives for Designing Delivery System for Flavour and Fragrance: Current State-of-the-Art and for Future Exploration\",\"authors\":\"Sumant, Subh Naman, Sanyam Sharma, Ashish Baldi\",\"doi\":\"10.1002/ffj.3807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Quality by design (QbD) is a systematic method for the development of product and process design to ensure quality and efficacy. In the fragrance and flavour industry, the design of delivery systems plays a crucial role in the overall product quality and consumer acceptance. This article analyses the current state-of-the-art and future explorations from QbD perspective for designing appropriate delivery systems for flavour and fragrance applications. The QbD approach for delivery system design involves classifying critical quality attributes of the product and process, defining the critical process parameters and developing a design space to ensure product quality within the specified range. In addition, risk assessment and mitigation strategies are also a component of the QbD techniques, which ensure the robustness of the delivery system. Various delivery systems such as microencapsulation, nanoencapsulation, solid lipid nanoparticles and liposomes have been explored in the flavour and fragrance industry. These delivery systems provide controlled release, protection, and enhanced stability of the active ingredients. However, challenges such as scale-up, reproducibility, and cost-effectiveness need to be addressed to ensure their commercial viability. In conclusion, the QbD outlook provides a comprehensive framework for the design of carrier system for fragrance and flavour applications. The incorporation of risk assessment and mitigation strategies ensures the robustness of the delivery system, and the future exploration of advanced technologies may further enhance the efficiency and effectiveness of the QbD approach.</p>\\n </div>\",\"PeriodicalId\":170,\"journal\":{\"name\":\"Flavour and Fragrance Journal\",\"volume\":\"39 6\",\"pages\":\"336-361\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flavour and Fragrance Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3807\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flavour and Fragrance Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3807","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Quality by Design Perspectives for Designing Delivery System for Flavour and Fragrance: Current State-of-the-Art and for Future Exploration
Quality by design (QbD) is a systematic method for the development of product and process design to ensure quality and efficacy. In the fragrance and flavour industry, the design of delivery systems plays a crucial role in the overall product quality and consumer acceptance. This article analyses the current state-of-the-art and future explorations from QbD perspective for designing appropriate delivery systems for flavour and fragrance applications. The QbD approach for delivery system design involves classifying critical quality attributes of the product and process, defining the critical process parameters and developing a design space to ensure product quality within the specified range. In addition, risk assessment and mitigation strategies are also a component of the QbD techniques, which ensure the robustness of the delivery system. Various delivery systems such as microencapsulation, nanoencapsulation, solid lipid nanoparticles and liposomes have been explored in the flavour and fragrance industry. These delivery systems provide controlled release, protection, and enhanced stability of the active ingredients. However, challenges such as scale-up, reproducibility, and cost-effectiveness need to be addressed to ensure their commercial viability. In conclusion, the QbD outlook provides a comprehensive framework for the design of carrier system for fragrance and flavour applications. The incorporation of risk assessment and mitigation strategies ensures the robustness of the delivery system, and the future exploration of advanced technologies may further enhance the efficiency and effectiveness of the QbD approach.
期刊介绍:
Flavour and Fragrance Journal publishes original research articles, reviews and special reports on all aspects of flavour and fragrance. Its high scientific standards and international character is ensured by a strict refereeing system and an editorial team representing the multidisciplinary expertise of our field of research. Because analysis is the matter of many submissions and supports the data used in many other domains, a special attention is placed on the quality of analytical techniques. All natural or synthetic products eliciting or influencing a sensory stimulus related to gustation or olfaction are eligible for publication in the Journal. Eligible as well are the techniques related to their preparation, characterization and safety. This notably involves analytical and sensory analysis, physical chemistry, modeling, microbiology – antimicrobial properties, biology, chemosensory perception and legislation.
The overall aim is to produce a journal of the highest quality which provides a scientific forum for academia as well as for industry on all aspects of flavors, fragrances and related materials, and which is valued by readers and contributors alike.