等摩尔铬锰铁合金和铬钴镍多元素合金在碱性氯化钠电解液中的渗透行为

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-09-20 DOI:10.1002/celc.202400346
Annica Wetzel, Daniel Morell, Marcus von der Au, Julia Witt, Ozlem Ozcan
{"title":"等摩尔铬锰铁合金和铬钴镍多元素合金在碱性氯化钠电解液中的渗透行为","authors":"Annica Wetzel,&nbsp;Daniel Morell,&nbsp;Marcus von der Au,&nbsp;Julia Witt,&nbsp;Ozlem Ozcan","doi":"10.1002/celc.202400346","DOIUrl":null,"url":null,"abstract":"<p>We investigated the corrosion properties and transpassive behavior of CrMnFeCoNi and CrCoNi multi-principal element alloys (MPEAs) in a 0.1 M NaCl electrolyte at pH 12. By using SECM-based tip substrate voltammetry (TSV) in combination with the chemical analysis of the electrolyte, we were able to differentiate between anodic metal dissolution and oxygen evolution in the transpassive range. Our investigations have shown that CrCoNi has a significantly higher corrosion resistance compared to CrMnFeCoNi. In the studied alkaline environment, a transpassive oxide film is formed on the surface of CrCoNi during secondary passivation. This transpassive oxide film appears to play a significant role in oxygen evolution, as the increase in TSV currents at the microelectrode coincides with the corresponding current density plateau of the voltametric current trace. The formation of the transpassive oxide film was not observed in previous studies conducted in acidic environments. Moreover, the alkaline electrolyte induced a positive hysteresis and mild pitting corrosion, in addition to intergranular corrosion, which was the sole corrosion process observed at acidic pH levels. These findings enhance the understanding of the processes governing the transpassivity of CrMnFeCoNi and CrCoNi MPEAs in alkaline environments and have potential implications for the development of application-tailored corrosion-resistant MPEAs.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400346","citationCount":"0","resultStr":"{\"title\":\"Transpassive Behavior of Equimolar CrMnFeCoNi and CrCoNi Multi-Principal Element Alloys in an Alkaline NaCl Electrolyte\",\"authors\":\"Annica Wetzel,&nbsp;Daniel Morell,&nbsp;Marcus von der Au,&nbsp;Julia Witt,&nbsp;Ozlem Ozcan\",\"doi\":\"10.1002/celc.202400346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigated the corrosion properties and transpassive behavior of CrMnFeCoNi and CrCoNi multi-principal element alloys (MPEAs) in a 0.1 M NaCl electrolyte at pH 12. By using SECM-based tip substrate voltammetry (TSV) in combination with the chemical analysis of the electrolyte, we were able to differentiate between anodic metal dissolution and oxygen evolution in the transpassive range. Our investigations have shown that CrCoNi has a significantly higher corrosion resistance compared to CrMnFeCoNi. In the studied alkaline environment, a transpassive oxide film is formed on the surface of CrCoNi during secondary passivation. This transpassive oxide film appears to play a significant role in oxygen evolution, as the increase in TSV currents at the microelectrode coincides with the corresponding current density plateau of the voltametric current trace. The formation of the transpassive oxide film was not observed in previous studies conducted in acidic environments. Moreover, the alkaline electrolyte induced a positive hysteresis and mild pitting corrosion, in addition to intergranular corrosion, which was the sole corrosion process observed at acidic pH levels. These findings enhance the understanding of the processes governing the transpassivity of CrMnFeCoNi and CrCoNi MPEAs in alkaline environments and have potential implications for the development of application-tailored corrosion-resistant MPEAs.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400346\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400346","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 CrMnFeCoNi 和 CrCoNi 多主元素合金 (MPEA) 在 pH 值为 12 的 0.1 M NaCl 电解液中的腐蚀特性和换位行为。通过使用基于 SECM 的尖端基底伏安法 (TSV),并结合电解质的化学分析,我们能够区分阳极金属溶解和透射范围内的氧演化。我们的研究表明,与铬锰铁钴镍相比,铬钴镍具有更高的耐腐蚀性。在所研究的碱性环境中,铬钴镍表面在二次钝化过程中形成了一层透明氧化膜。由于微电极上 TSV 电流的增加与伏安电流轨迹的相应电流密度高点相吻合,因此这种透明氧化膜似乎在氧进化过程中发挥了重要作用。之前在酸性环境中进行的研究并未观察到透明氧化膜的形成。此外,除了在酸性 pH 水平下观察到的唯一腐蚀过程--晶间腐蚀外,碱性电解质还诱发了正磁滞和轻微点蚀。这些发现加深了人们对铬锰铁钴镍和铬钴镍多孔锰酸锂在碱性环境中的渗透性过程的了解,对开发适合具体应用的耐腐蚀多孔锰酸锂具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transpassive Behavior of Equimolar CrMnFeCoNi and CrCoNi Multi-Principal Element Alloys in an Alkaline NaCl Electrolyte

We investigated the corrosion properties and transpassive behavior of CrMnFeCoNi and CrCoNi multi-principal element alloys (MPEAs) in a 0.1 M NaCl electrolyte at pH 12. By using SECM-based tip substrate voltammetry (TSV) in combination with the chemical analysis of the electrolyte, we were able to differentiate between anodic metal dissolution and oxygen evolution in the transpassive range. Our investigations have shown that CrCoNi has a significantly higher corrosion resistance compared to CrMnFeCoNi. In the studied alkaline environment, a transpassive oxide film is formed on the surface of CrCoNi during secondary passivation. This transpassive oxide film appears to play a significant role in oxygen evolution, as the increase in TSV currents at the microelectrode coincides with the corresponding current density plateau of the voltametric current trace. The formation of the transpassive oxide film was not observed in previous studies conducted in acidic environments. Moreover, the alkaline electrolyte induced a positive hysteresis and mild pitting corrosion, in addition to intergranular corrosion, which was the sole corrosion process observed at acidic pH levels. These findings enhance the understanding of the processes governing the transpassivity of CrMnFeCoNi and CrCoNi MPEAs in alkaline environments and have potential implications for the development of application-tailored corrosion-resistant MPEAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1