Patrick M. Becker, Katja Heinze, Biprajit Sarkar, Johannes Kästner
{"title":"封面专题:氧化还原酸碱相图作为计算氧化还原化学的切入点(ChemElectroChem 20/2024)","authors":"Patrick M. Becker, Katja Heinze, Biprajit Sarkar, Johannes Kästner","doi":"10.1002/celc.202482002","DOIUrl":null,"url":null,"abstract":"<p><b>In their Research Article</b>, Johannes Kästner and co-workers provide a theoretical basis for the study of a system with respect to its redox and acid/base properties and represent the results by redox-acid/base phase diagrams. As this approach provides access to all properties associated with the system′s free-energy profile, not only the stability of species under different conditions but also kinetic quantities can be depicted. The diagrams can be constructed based on both experimental and computational data, thus bridging experiment and simulation (DOI: 10.1002/celc.202400301).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202482002","citationCount":"0","resultStr":"{\"title\":\"Cover Feature: Redox−Acid/Base Phase Diagrams as an Entry to Computational Redox Chemistry (ChemElectroChem 20/2024)\",\"authors\":\"Patrick M. Becker, Katja Heinze, Biprajit Sarkar, Johannes Kästner\",\"doi\":\"10.1002/celc.202482002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>In their Research Article</b>, Johannes Kästner and co-workers provide a theoretical basis for the study of a system with respect to its redox and acid/base properties and represent the results by redox-acid/base phase diagrams. As this approach provides access to all properties associated with the system′s free-energy profile, not only the stability of species under different conditions but also kinetic quantities can be depicted. The diagrams can be constructed based on both experimental and computational data, thus bridging experiment and simulation (DOI: 10.1002/celc.202400301).\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202482002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202482002\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202482002","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Cover Feature: Redox−Acid/Base Phase Diagrams as an Entry to Computational Redox Chemistry (ChemElectroChem 20/2024)
In their Research Article, Johannes Kästner and co-workers provide a theoretical basis for the study of a system with respect to its redox and acid/base properties and represent the results by redox-acid/base phase diagrams. As this approach provides access to all properties associated with the system′s free-energy profile, not only the stability of species under different conditions but also kinetic quantities can be depicted. The diagrams can be constructed based on both experimental and computational data, thus bridging experiment and simulation (DOI: 10.1002/celc.202400301).
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.