{"title":"图相似性的网络互信息度量","authors":"Helcio Felippe, Federico Battiston, Alec Kirkley","doi":"10.1038/s42005-024-01830-3","DOIUrl":null,"url":null,"abstract":"A wide range of tasks in network analysis, such as clustering network populations or identifying anomalies in temporal graph streams, require a measure of the similarity between two graphs. To provide a meaningful data summary for downstream scientific analyses, the graph similarity measures used for these tasks must be principled, interpretable, and capable of distinguishing meaningful overlapping network structure from statistical noise at different scales of interest. Here we derive a family of graph mutual information measures that satisfy these criteria and are constructed using only fundamental information theoretic principles. Our measures capture the information shared among networks according to different encodings of their structural information, with our mesoscale mutual information measure allowing for network comparison under any specified network coarse-graining. We test our measures in a range of applications on real and synthetic network data, finding that they effectively highlight intuitive aspects of network similarity across scales in a variety of systems. Graph similarity measures are essential for downstream tasks including clustering, embedding, and regression with populations of networks. Here the authors derive a family of graph mutual information measures that allow for a principled, interpretable, and efficient comparison of networks at multiple scales.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01830-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Network mutual information measures for graph similarity\",\"authors\":\"Helcio Felippe, Federico Battiston, Alec Kirkley\",\"doi\":\"10.1038/s42005-024-01830-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide range of tasks in network analysis, such as clustering network populations or identifying anomalies in temporal graph streams, require a measure of the similarity between two graphs. To provide a meaningful data summary for downstream scientific analyses, the graph similarity measures used for these tasks must be principled, interpretable, and capable of distinguishing meaningful overlapping network structure from statistical noise at different scales of interest. Here we derive a family of graph mutual information measures that satisfy these criteria and are constructed using only fundamental information theoretic principles. Our measures capture the information shared among networks according to different encodings of their structural information, with our mesoscale mutual information measure allowing for network comparison under any specified network coarse-graining. We test our measures in a range of applications on real and synthetic network data, finding that they effectively highlight intuitive aspects of network similarity across scales in a variety of systems. Graph similarity measures are essential for downstream tasks including clustering, embedding, and regression with populations of networks. Here the authors derive a family of graph mutual information measures that allow for a principled, interpretable, and efficient comparison of networks at multiple scales.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01830-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01830-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01830-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Network mutual information measures for graph similarity
A wide range of tasks in network analysis, such as clustering network populations or identifying anomalies in temporal graph streams, require a measure of the similarity between two graphs. To provide a meaningful data summary for downstream scientific analyses, the graph similarity measures used for these tasks must be principled, interpretable, and capable of distinguishing meaningful overlapping network structure from statistical noise at different scales of interest. Here we derive a family of graph mutual information measures that satisfy these criteria and are constructed using only fundamental information theoretic principles. Our measures capture the information shared among networks according to different encodings of their structural information, with our mesoscale mutual information measure allowing for network comparison under any specified network coarse-graining. We test our measures in a range of applications on real and synthetic network data, finding that they effectively highlight intuitive aspects of network similarity across scales in a variety of systems. Graph similarity measures are essential for downstream tasks including clustering, embedding, and regression with populations of networks. Here the authors derive a family of graph mutual information measures that allow for a principled, interpretable, and efficient comparison of networks at multiple scales.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.