六边形硅锗纳米线的受激发射

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-10-10 DOI:10.1038/s42005-024-01824-1
Marvin A. J. van Tilburg, Riccardo Farina, Victor T. van Lange, Wouter H. J. Peeters, Steffen Meder, Marvin M. Jansen, Marcel A. Verheijen, M. Vettori, Jonathan J. Finley, Erik. P. A. M. Bakkers, Jos. E. M. Haverkort
{"title":"六边形硅锗纳米线的受激发射","authors":"Marvin A. J. van Tilburg, Riccardo Farina, Victor T. van Lange, Wouter H. J. Peeters, Steffen Meder, Marvin M. Jansen, Marcel A. Verheijen, M. Vettori, Jonathan J. Finley, Erik. P. A. M. Bakkers, Jos. E. M. Haverkort","doi":"10.1038/s42005-024-01824-1","DOIUrl":null,"url":null,"abstract":"Hexagonal crystal phase silicon-germanium (hex-SiGe) features efficient direct bandgap emission between 1.5 and 3.4 µm. For expanding its application potential, the key challenge is to demonstrate material gain for enabling a hex-SiGe semiconductor laser. Here we report the transition from the spontaneous emission regime to the stimulated emission-dominated amplified spontaneous emission regime in the optically excited part of a hexagonal Si0.2Ge0.8 nanowire. We observe narrow resonance peaks arising above a spontaneous emission background, which show lasing signatures such as a threshold and a superlinear increase of the emission. A Hakki-Paoli analysis of the height of the cavity resonances provides the gain spectrum of hex-SiGe, showing evidence for a positive material gain. Measurements of the cavity line widths provide an independent assessment of the total cavity loss. While lasing has not been reached, the observation of optical amplification and amplified spontaneous emission provides a clear roadmap toward lasing in hexagonal SiGe. This opens a new pathway for the monolithic integration of a Si-compatible laser within electronic chips. Hexagonal silicon-germanium features efficient direct bandgap light emission. Here, the authors demonstrate the presence of stimulated emission and optical gain in hexagonal silicon germanium and provide a roadmap to reach lasing.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01824-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Stimulated emission from hexagonal silicon-germanium nanowires\",\"authors\":\"Marvin A. J. van Tilburg, Riccardo Farina, Victor T. van Lange, Wouter H. J. Peeters, Steffen Meder, Marvin M. Jansen, Marcel A. Verheijen, M. Vettori, Jonathan J. Finley, Erik. P. A. M. Bakkers, Jos. E. M. Haverkort\",\"doi\":\"10.1038/s42005-024-01824-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hexagonal crystal phase silicon-germanium (hex-SiGe) features efficient direct bandgap emission between 1.5 and 3.4 µm. For expanding its application potential, the key challenge is to demonstrate material gain for enabling a hex-SiGe semiconductor laser. Here we report the transition from the spontaneous emission regime to the stimulated emission-dominated amplified spontaneous emission regime in the optically excited part of a hexagonal Si0.2Ge0.8 nanowire. We observe narrow resonance peaks arising above a spontaneous emission background, which show lasing signatures such as a threshold and a superlinear increase of the emission. A Hakki-Paoli analysis of the height of the cavity resonances provides the gain spectrum of hex-SiGe, showing evidence for a positive material gain. Measurements of the cavity line widths provide an independent assessment of the total cavity loss. While lasing has not been reached, the observation of optical amplification and amplified spontaneous emission provides a clear roadmap toward lasing in hexagonal SiGe. This opens a new pathway for the monolithic integration of a Si-compatible laser within electronic chips. Hexagonal silicon-germanium features efficient direct bandgap light emission. Here, the authors demonstrate the presence of stimulated emission and optical gain in hexagonal silicon germanium and provide a roadmap to reach lasing.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01824-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01824-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01824-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

六方晶相硅锗(hex-SiGe)具有 1.5 至 3.4 µm 的高效直接带隙发射。为了扩大其应用潜力,关键的挑战是证明六硅锗半导体激光器的材料增益。在此,我们报告了在六边形 Si0.2Ge0.8 纳米线的光学激发部分,自发辐射机制向受激发射为主的放大自发辐射机制的转变。我们观察到在自发辐射背景之上产生的窄共振峰,这些共振峰显示出激光特征,如阈值和发射的超线性增加。对空腔共振高度的哈基-保利分析提供了六硅锗的增益谱,显示了正材料增益的证据。对空腔线宽的测量提供了对空腔总损耗的独立评估。虽然还没有实现激光,但对光学放大和放大自发辐射的观测为六方硅锗实现激光提供了清晰的路线图。这为在电子芯片中单片集成硅兼容激光器开辟了一条新途径。六方硅锗具有高效的直接带隙光发射特性。在此,作者证明了六方硅锗中存在受激发射和光学增益,并提供了实现激光的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stimulated emission from hexagonal silicon-germanium nanowires
Hexagonal crystal phase silicon-germanium (hex-SiGe) features efficient direct bandgap emission between 1.5 and 3.4 µm. For expanding its application potential, the key challenge is to demonstrate material gain for enabling a hex-SiGe semiconductor laser. Here we report the transition from the spontaneous emission regime to the stimulated emission-dominated amplified spontaneous emission regime in the optically excited part of a hexagonal Si0.2Ge0.8 nanowire. We observe narrow resonance peaks arising above a spontaneous emission background, which show lasing signatures such as a threshold and a superlinear increase of the emission. A Hakki-Paoli analysis of the height of the cavity resonances provides the gain spectrum of hex-SiGe, showing evidence for a positive material gain. Measurements of the cavity line widths provide an independent assessment of the total cavity loss. While lasing has not been reached, the observation of optical amplification and amplified spontaneous emission provides a clear roadmap toward lasing in hexagonal SiGe. This opens a new pathway for the monolithic integration of a Si-compatible laser within electronic chips. Hexagonal silicon-germanium features efficient direct bandgap light emission. Here, the authors demonstrate the presence of stimulated emission and optical gain in hexagonal silicon germanium and provide a roadmap to reach lasing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating DarkSide-20k sensitivity to light dark matter particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1