Jan H Magielski,Sarah M Ruggiero,Julie Xian,Shridhar Parthasarathy,Peter D Galer,Shiva Ganesan,Amanda Back,Jillian L McKee,Ian McSalley,Alexander K Gonzalez,Angela Morgan,Joseph Donaher,Ingo Helbig
{"title":"儿科言语和语言障碍的临床和遗传谱系。","authors":"Jan H Magielski,Sarah M Ruggiero,Julie Xian,Shridhar Parthasarathy,Peter D Galer,Shiva Ganesan,Amanda Back,Jillian L McKee,Ian McSalley,Alexander K Gonzalez,Angela Morgan,Joseph Donaher,Ingo Helbig","doi":"10.1093/brain/awae264","DOIUrl":null,"url":null,"abstract":"Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The clinical and genetic spectrum of paediatric speech and language disorders.\",\"authors\":\"Jan H Magielski,Sarah M Ruggiero,Julie Xian,Shridhar Parthasarathy,Peter D Galer,Shiva Ganesan,Amanda Back,Jillian L McKee,Ian McSalley,Alexander K Gonzalez,Angela Morgan,Joseph Donaher,Ingo Helbig\",\"doi\":\"10.1093/brain/awae264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae264\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae264","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The clinical and genetic spectrum of paediatric speech and language disorders.
Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.