儿科言语和语言障碍的临床和遗传谱系。

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY Brain Pub Date : 2024-10-16 DOI:10.1093/brain/awae264
Jan H Magielski,Sarah M Ruggiero,Julie Xian,Shridhar Parthasarathy,Peter D Galer,Shiva Ganesan,Amanda Back,Jillian L McKee,Ian McSalley,Alexander K Gonzalez,Angela Morgan,Joseph Donaher,Ingo Helbig
{"title":"儿科言语和语言障碍的临床和遗传谱系。","authors":"Jan H Magielski,Sarah M Ruggiero,Julie Xian,Shridhar Parthasarathy,Peter D Galer,Shiva Ganesan,Amanda Back,Jillian L McKee,Ian McSalley,Alexander K Gonzalez,Angela Morgan,Joseph Donaher,Ingo Helbig","doi":"10.1093/brain/awae264","DOIUrl":null,"url":null,"abstract":"Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The clinical and genetic spectrum of paediatric speech and language disorders.\",\"authors\":\"Jan H Magielski,Sarah M Ruggiero,Julie Xian,Shridhar Parthasarathy,Peter D Galer,Shiva Ganesan,Amanda Back,Jillian L McKee,Ian McSalley,Alexander K Gonzalez,Angela Morgan,Joseph Donaher,Ingo Helbig\",\"doi\":\"10.1093/brain/awae264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae264\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae264","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,言语和语言障碍有很大的遗传因素。虽然语言障碍经常被视为其他疾病的组成部分,但作为单独的表型亚群,有关语言差异遗传基础的研究迄今为止还很有限。在此,我们对 52 143 名患者的言语和语言障碍进行了深入分析,通过对整个大型儿科医疗网络的电子病历进行大规模数据挖掘,重建了临床病史。这些疾病的报告频率在 2 到 5 岁之间最高,涉及 26 种广泛的言语和语言诊断。我们使用自然语言处理技术来评估全文记录中的临床诊断在多大程度上反映在 ICD-10 诊断代码中。我们发现,通过 ICD-10 诊断代码可以很容易地检索到失语症和语言障碍,而口吃作为一种语言表型,只有 12% 的人通过适当的 ICD-10 编码得到了诊断。我们发现,言语和语言障碍与神经发育疾病(30.31%)以及癫痫(6.07%)和运动障碍(2.05%)有明显的合并症。在我们的电子病历分析中,最常见的遗传疾病是 STXBP1(21 例)、PTEN(20 例)和 CACNA1A(18 例)。在评估基因诊断与特定语言表型的关联时,我们观察到 STXBP1 与失语症(P = 8.57 × 10-7,95% 置信区间 = 18.62-130.39)和 MYO7A 与听力损失导致的言语和语言发育迟缓(P = 1.24 × 10-5,95% 置信区间 = 17.46-无穷大)存在关联。最后,在具有全外显子组测序数据的 726 人子队列中,我们发现了神经元受体通路中罕见变异的丰富性,此外,UQCRC1 和 KIF17 与表达性失语症相关,MROH8 和 BCHE 与言语能力差相关,USP37、SLC22A9 和 UMODL1 与失语症相关。总之,我们的研究勾勒出了儿科言语和语言障碍的全貌,证实了语言特征的表型复杂性和新的基因型-表型关联。儿科言语和语言障碍亚组在单基因病因构成方面存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The clinical and genetic spectrum of paediatric speech and language disorders.
Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52 143 individuals, reconstructing clinical histories using a large-scale data-mining approach of the electronic medical records from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of 26 broad speech and language diagnoses. We used natural language processing to assess the degree to which clinical diagnoses in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be retrieved easily through ICD-10 diagnosis codes, whereas stuttering as a speech phenotype was coded in only 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and, to a lesser degree, with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our analysis of electronic medical records were STXBP1 (n = 21), PTEN (n = 20) and CACNA1A (n = 18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P = 8.57 × 10-7, 95% confidence interval = 18.62-130.39) and MYO7A with speech and language development delay attributable to hearing loss (P = 1.24 × 10-5, 95% confidence interval = 17.46-infinity). Finally, in a sub-cohort of 726 individuals with whole-exome sequencing data, we identified an enrichment of rare variants in neuronal receptor pathways, in addition to associations of UQCRC1 and KIF17 with expressive aphasia, MROH8 and BCHE with poor speech, and USP37, SLC22A9 and UMODL1 with aphasia. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
期刊最新文献
Transient brain structure changes after high phenylalanine exposure in adults with phenylketonuria. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Single-value brain activity scores reflect both severity and risk across the Alzheimer's continuum. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1