Piotr Matczak, Philipp Buday, Stephan Kupfer, Helmar Görls, Grzegorz Mlostoń, Wolfgang Weigand
{"title":"探究 DFT 在[FeFe]氢酶模型结构表征中的性能","authors":"Piotr Matczak, Philipp Buday, Stephan Kupfer, Helmar Görls, Grzegorz Mlostoń, Wolfgang Weigand","doi":"10.1002/jcc.27515","DOIUrl":null,"url":null,"abstract":"In this work, a series of DFT and DFT-D methods is combined with double-<i>ζ</i> basis sets to benchmark their performance in predicting the structures of five newly synthesized hexacarbonyl diiron complexes with a bridging ligand featuring a <i>μ</i>-S<sub>2</sub>C<sub>3</sub> motif in a ring-containing unit functionalized with aromatic groups. Such complexes have been considered as [FeFe] hydrogenase catalytic site models with potential for eco-friendly energetic applications. According to this assessment, r<sup>2</sup>SCAN is identified as the density functional recommended for the reliable description of the molecular and crystal structures of the herein studied models. However, the butterfly (<i>μ</i>-S)<sub>2</sub>Fe<sub>2</sub> core of the models demonstrates a minor deformation of its optimized geometry obtained from both molecular and periodic calculations. The Fe<span></span>Fe bond length is slightly underestimated while the Fe<span></span>S bonds tend to be too long. Adding the D3(BJ) correction to r<sup>2</sup>SCAN does not lead to any improvement in the calculated structures.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"24 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the performance of DFT in the structural characterization of [FeFe] hydrogenase models\",\"authors\":\"Piotr Matczak, Philipp Buday, Stephan Kupfer, Helmar Görls, Grzegorz Mlostoń, Wolfgang Weigand\",\"doi\":\"10.1002/jcc.27515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a series of DFT and DFT-D methods is combined with double-<i>ζ</i> basis sets to benchmark their performance in predicting the structures of five newly synthesized hexacarbonyl diiron complexes with a bridging ligand featuring a <i>μ</i>-S<sub>2</sub>C<sub>3</sub> motif in a ring-containing unit functionalized with aromatic groups. Such complexes have been considered as [FeFe] hydrogenase catalytic site models with potential for eco-friendly energetic applications. According to this assessment, r<sup>2</sup>SCAN is identified as the density functional recommended for the reliable description of the molecular and crystal structures of the herein studied models. However, the butterfly (<i>μ</i>-S)<sub>2</sub>Fe<sub>2</sub> core of the models demonstrates a minor deformation of its optimized geometry obtained from both molecular and periodic calculations. The Fe<span></span>Fe bond length is slightly underestimated while the Fe<span></span>S bonds tend to be too long. Adding the D3(BJ) correction to r<sup>2</sup>SCAN does not lead to any improvement in the calculated structures.\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/jcc.27515\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.27515","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Probing the performance of DFT in the structural characterization of [FeFe] hydrogenase models
In this work, a series of DFT and DFT-D methods is combined with double-ζ basis sets to benchmark their performance in predicting the structures of five newly synthesized hexacarbonyl diiron complexes with a bridging ligand featuring a μ-S2C3 motif in a ring-containing unit functionalized with aromatic groups. Such complexes have been considered as [FeFe] hydrogenase catalytic site models with potential for eco-friendly energetic applications. According to this assessment, r2SCAN is identified as the density functional recommended for the reliable description of the molecular and crystal structures of the herein studied models. However, the butterfly (μ-S)2Fe2 core of the models demonstrates a minor deformation of its optimized geometry obtained from both molecular and periodic calculations. The FeFe bond length is slightly underestimated while the FeS bonds tend to be too long. Adding the D3(BJ) correction to r2SCAN does not lead to any improvement in the calculated structures.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.