面向智能运动的自供电高伸展性铁电体纳米发电机

Yiqin Wang , Xianfa Cai , Yufeng Guo , Zhi Chen , Yunqi Cao , Wangdi Du , Tian Xia , Nelson Sepulveda , Wei Li
{"title":"面向智能运动的自供电高伸展性铁电体纳米发电机","authors":"Yiqin Wang ,&nbsp;Xianfa Cai ,&nbsp;Yufeng Guo ,&nbsp;Zhi Chen ,&nbsp;Yunqi Cao ,&nbsp;Wangdi Du ,&nbsp;Tian Xia ,&nbsp;Nelson Sepulveda ,&nbsp;Wei Li","doi":"10.1016/j.nwnano.2024.100053","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroelectret nanogenerators (FENGs), recognized for their porous structures that facilitate charge retention, thereby creating giant electric dipoles and exhibiting remarkable piezoelectric properties, are utilized in the development of various flexible transducers. However, despite their flexibility, most developed ferroelectret nanogenerators lack adequate stretchability and satisfactory transverse piezoelectric properties, significantly inhibiting their widespread deployment in wearable or skin-mounted electronics. Here, we introduce a highly stretchable ferroelectret nanogenerator (HS-FENG) built from laser-induced graphene (LIG), Ecoflex and anhydrous ethanol, demonstrating exceptional flexibility and stretchability, along with longitudinal and transverse piezoelectric effects. The stretchability of HS-FENG can reach a record of 468 %, while the quasi-static piezoelectric coefficients <em>d</em><sub>33</sub> and <em>d</em><sub>31</sub> are approximately 120 pC/N and 70 pC/N, respectively. To our knowledge, this is the first demonstration of the developed FENG with remarkably high stretchability. Furthermore, leveraging the performance of the created HS-FENG, we construct a skin-mounted intelligent kinesiology tape capable of effectively monitoring motion signals from human muscles and joints, thereby offering a deeper understanding of movement for users across different levels of physical activity, from professional athletes to individuals undergoing rehabilitation. The development of intelligent kinesiology tape exemplifies the potential of HS-FENG technology in enhancing professional athletic training and personalized healthcare. It contributes to the advancement of inconspicuous skin-mounted biomechanical feedback systems and human-machine interfaces, marking progress in the field.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"8 ","pages":"Article 100053"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-powered highly stretchable ferroelectret nanogenerator towards intelligent sports\",\"authors\":\"Yiqin Wang ,&nbsp;Xianfa Cai ,&nbsp;Yufeng Guo ,&nbsp;Zhi Chen ,&nbsp;Yunqi Cao ,&nbsp;Wangdi Du ,&nbsp;Tian Xia ,&nbsp;Nelson Sepulveda ,&nbsp;Wei Li\",\"doi\":\"10.1016/j.nwnano.2024.100053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ferroelectret nanogenerators (FENGs), recognized for their porous structures that facilitate charge retention, thereby creating giant electric dipoles and exhibiting remarkable piezoelectric properties, are utilized in the development of various flexible transducers. However, despite their flexibility, most developed ferroelectret nanogenerators lack adequate stretchability and satisfactory transverse piezoelectric properties, significantly inhibiting their widespread deployment in wearable or skin-mounted electronics. Here, we introduce a highly stretchable ferroelectret nanogenerator (HS-FENG) built from laser-induced graphene (LIG), Ecoflex and anhydrous ethanol, demonstrating exceptional flexibility and stretchability, along with longitudinal and transverse piezoelectric effects. The stretchability of HS-FENG can reach a record of 468 %, while the quasi-static piezoelectric coefficients <em>d</em><sub>33</sub> and <em>d</em><sub>31</sub> are approximately 120 pC/N and 70 pC/N, respectively. To our knowledge, this is the first demonstration of the developed FENG with remarkably high stretchability. Furthermore, leveraging the performance of the created HS-FENG, we construct a skin-mounted intelligent kinesiology tape capable of effectively monitoring motion signals from human muscles and joints, thereby offering a deeper understanding of movement for users across different levels of physical activity, from professional athletes to individuals undergoing rehabilitation. The development of intelligent kinesiology tape exemplifies the potential of HS-FENG technology in enhancing professional athletic training and personalized healthcare. It contributes to the advancement of inconspicuous skin-mounted biomechanical feedback systems and human-machine interfaces, marking progress in the field.</div></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"8 \",\"pages\":\"Article 100053\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978124000230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁蕊体纳米发电机(FENGs)因其多孔结构可促进电荷保持,从而产生巨大的电偶极子并表现出显著的压电特性而被广泛应用于各种柔性传感器的开发。然而,尽管具有柔性,但大多数已开发的铁电体纳米发电机都缺乏足够的可拉伸性和令人满意的横向压电特性,这极大地阻碍了它们在可穿戴或皮肤安装电子设备中的广泛应用。在这里,我们介绍了一种由激光诱导石墨烯(LIG)、Ecoflex 和无水乙醇制成的高拉伸性铁电体纳米发电机(HS-FENG),它具有优异的柔韧性和拉伸性,以及纵向和横向压电效应。HS-FENG 的拉伸性达到了创纪录的 468%,准静态压电系数 d33 和 d31 分别约为 120 pC/N 和 70 pC/N。据我们所知,这是首次展示所开发的 FENG 具有极高的拉伸性。此外,利用所创造的 HS-FENG 的性能,我们构建了一种安装在皮肤上的智能运动胶带,它能够有效监测来自人体肌肉和关节的运动信号,从而为不同运动水平的用户(从专业运动员到正在接受康复治疗的个人)提供对运动的更深入了解。智能运动胶带的开发体现了 HS-FENG 技术在提高专业运动训练和个性化医疗保健方面的潜力。它为不显眼的皮肤安装生物力学反馈系统和人机界面的发展做出了贡献,标志着该领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-powered highly stretchable ferroelectret nanogenerator towards intelligent sports
Ferroelectret nanogenerators (FENGs), recognized for their porous structures that facilitate charge retention, thereby creating giant electric dipoles and exhibiting remarkable piezoelectric properties, are utilized in the development of various flexible transducers. However, despite their flexibility, most developed ferroelectret nanogenerators lack adequate stretchability and satisfactory transverse piezoelectric properties, significantly inhibiting their widespread deployment in wearable or skin-mounted electronics. Here, we introduce a highly stretchable ferroelectret nanogenerator (HS-FENG) built from laser-induced graphene (LIG), Ecoflex and anhydrous ethanol, demonstrating exceptional flexibility and stretchability, along with longitudinal and transverse piezoelectric effects. The stretchability of HS-FENG can reach a record of 468 %, while the quasi-static piezoelectric coefficients d33 and d31 are approximately 120 pC/N and 70 pC/N, respectively. To our knowledge, this is the first demonstration of the developed FENG with remarkably high stretchability. Furthermore, leveraging the performance of the created HS-FENG, we construct a skin-mounted intelligent kinesiology tape capable of effectively monitoring motion signals from human muscles and joints, thereby offering a deeper understanding of movement for users across different levels of physical activity, from professional athletes to individuals undergoing rehabilitation. The development of intelligent kinesiology tape exemplifies the potential of HS-FENG technology in enhancing professional athletic training and personalized healthcare. It contributes to the advancement of inconspicuous skin-mounted biomechanical feedback systems and human-machine interfaces, marking progress in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tailoring the shell structures in core-shell metal nanostructures for improved catalytic reduction of nitroaromatics Unraveling the laser decal transfer-based printing of ZnO ceramic towards FEP-ZnO-based Piezo-Tribo hybrid nanogenerators The surface charge effects: A route to the enhancement of the piezoelectric conversion efficiency in GaN nanowires Swift heavy ion irradiation puts InGaN/GaN multi-quantum wells on the track for efficient green light emission An analytical disquisition on the nonlinear optical responses of carbon quantum dots engineered by diverse synthesis methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1