Nikola Gavrilovic , Yuchen Leng , Jean-Marc Moschetta
{"title":"穿越大西洋的氢动力无人驾驶飞行器的热控制","authors":"Nikola Gavrilovic , Yuchen Leng , Jean-Marc Moschetta","doi":"10.1016/j.ast.2024.109667","DOIUrl":null,"url":null,"abstract":"<div><div>The Drone Mermoz project aims to evaluate the feasibility of an uncrewed aircraft system powered by a hydrogen fuel cell, designed to traverse the Atlantic Ocean. The aircraft must complete a journey of 3000 km with a minimum endurance of 36 hours. In addition to ensuring sufficient onboard energy, a critical requirement is the stable operation of the entire propulsion system throughout the journey.</div><div>This paper outlines the developmental stages, theoretical modeling, and experimental testing of a thermal management system designed for a long-range uncrewed aircraft system equipped with hydrogen fuel cell-based propulsion. The 4-meter, sub-25 kg aircraft is engineered to undertake a 3000 km journey from Dakar, Senegal to Natal, Brazil.</div><div>A critical challenge in developing this hydrogen-powered drone is designing an efficient thermal management system to ensure continuous ventilation of the fuselage. While one side of the system involves the fuel cell generating electricity for aircraft propulsion, the other side must effectively dissipate a substantial amount of heat to ensure the stable operation of the entire system.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109667"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal control of a hydrogen-powered uncrewed aerial vehicle for crossing the Atlantic Ocean\",\"authors\":\"Nikola Gavrilovic , Yuchen Leng , Jean-Marc Moschetta\",\"doi\":\"10.1016/j.ast.2024.109667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Drone Mermoz project aims to evaluate the feasibility of an uncrewed aircraft system powered by a hydrogen fuel cell, designed to traverse the Atlantic Ocean. The aircraft must complete a journey of 3000 km with a minimum endurance of 36 hours. In addition to ensuring sufficient onboard energy, a critical requirement is the stable operation of the entire propulsion system throughout the journey.</div><div>This paper outlines the developmental stages, theoretical modeling, and experimental testing of a thermal management system designed for a long-range uncrewed aircraft system equipped with hydrogen fuel cell-based propulsion. The 4-meter, sub-25 kg aircraft is engineered to undertake a 3000 km journey from Dakar, Senegal to Natal, Brazil.</div><div>A critical challenge in developing this hydrogen-powered drone is designing an efficient thermal management system to ensure continuous ventilation of the fuselage. While one side of the system involves the fuel cell generating electricity for aircraft propulsion, the other side must effectively dissipate a substantial amount of heat to ensure the stable operation of the entire system.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109667\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S127096382400796X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S127096382400796X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Thermal control of a hydrogen-powered uncrewed aerial vehicle for crossing the Atlantic Ocean
The Drone Mermoz project aims to evaluate the feasibility of an uncrewed aircraft system powered by a hydrogen fuel cell, designed to traverse the Atlantic Ocean. The aircraft must complete a journey of 3000 km with a minimum endurance of 36 hours. In addition to ensuring sufficient onboard energy, a critical requirement is the stable operation of the entire propulsion system throughout the journey.
This paper outlines the developmental stages, theoretical modeling, and experimental testing of a thermal management system designed for a long-range uncrewed aircraft system equipped with hydrogen fuel cell-based propulsion. The 4-meter, sub-25 kg aircraft is engineered to undertake a 3000 km journey from Dakar, Senegal to Natal, Brazil.
A critical challenge in developing this hydrogen-powered drone is designing an efficient thermal management system to ensure continuous ventilation of the fuselage. While one side of the system involves the fuel cell generating electricity for aircraft propulsion, the other side must effectively dissipate a substantial amount of heat to ensure the stable operation of the entire system.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.