铜平衡相关肿瘤治疗学的最新进展

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY Asian Journal of Pharmaceutical Sciences Pub Date : 2024-10-01 DOI:10.1016/j.ajps.2024.100948
Xinghua Ren , Xinyi Luo , Fuchang Wang , Long Wan , Xiaofan Wang , Jinya Xiong , Mengwei Ye , Shiqiao Rui , Zhu Liu , Siling Wang , Qinfu Zhao
{"title":"铜平衡相关肿瘤治疗学的最新进展","authors":"Xinghua Ren ,&nbsp;Xinyi Luo ,&nbsp;Fuchang Wang ,&nbsp;Long Wan ,&nbsp;Xiaofan Wang ,&nbsp;Jinya Xiong ,&nbsp;Mengwei Ye ,&nbsp;Shiqiao Rui ,&nbsp;Zhu Liu ,&nbsp;Siling Wang ,&nbsp;Qinfu Zhao","doi":"10.1016/j.ajps.2024.100948","DOIUrl":null,"url":null,"abstract":"<div><div>As the third essential trace element in the human body, copper plays a crucial role in various physiological processes, which lays the foundation for its broad applications in cancer treatments. The overview of copper, including pharmacokinetics, signaling pathways, and homeostasis dysregulation, is hereby discussed. Additionally, cuproptosis, as a newly proposed cell death mechanism associated with copper accumulation, is analyzed and further developed for efficient cancer treatment. Different forms of Cu-based nanoparticles and their advantages, as well as limiting factors, are introduced. Moreover, the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities. In addition, Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential, which are widely explored in diverse cancer therapies and combined therapies. Reducing the concentration of Cu<sup>2+</sup>/Cu<sup>+</sup> is another cancer-killing method, and chelators can meet this need. More importantly, challenges and future prospects are identified for further research.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 5","pages":"Article 100948"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in copper homeostasis-involved tumor theranostics\",\"authors\":\"Xinghua Ren ,&nbsp;Xinyi Luo ,&nbsp;Fuchang Wang ,&nbsp;Long Wan ,&nbsp;Xiaofan Wang ,&nbsp;Jinya Xiong ,&nbsp;Mengwei Ye ,&nbsp;Shiqiao Rui ,&nbsp;Zhu Liu ,&nbsp;Siling Wang ,&nbsp;Qinfu Zhao\",\"doi\":\"10.1016/j.ajps.2024.100948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the third essential trace element in the human body, copper plays a crucial role in various physiological processes, which lays the foundation for its broad applications in cancer treatments. The overview of copper, including pharmacokinetics, signaling pathways, and homeostasis dysregulation, is hereby discussed. Additionally, cuproptosis, as a newly proposed cell death mechanism associated with copper accumulation, is analyzed and further developed for efficient cancer treatment. Different forms of Cu-based nanoparticles and their advantages, as well as limiting factors, are introduced. Moreover, the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities. In addition, Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential, which are widely explored in diverse cancer therapies and combined therapies. Reducing the concentration of Cu<sup>2+</sup>/Cu<sup>+</sup> is another cancer-killing method, and chelators can meet this need. More importantly, challenges and future prospects are identified for further research.</div></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":\"19 5\",\"pages\":\"Article 100948\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087624000655\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624000655","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

作为人体第三大必需微量元素,铜在各种生理过程中发挥着至关重要的作用,这为其在癌症治疗中的广泛应用奠定了基础。本文讨论了铜的概况,包括药代动力学、信号通路和稳态失调。此外,还分析了新提出的与铜积累相关的细胞死亡机制--杯突症,并将其进一步用于高效的癌症治疗。介绍了不同形式的铜基纳米粒子及其优势和限制因素。此外,铜基纳米粒子的独特特性使其可应用于各种成像模式。此外,铜基纳米材料还具有优异的光热特性和 ROS 相关的肿瘤杀伤潜力,在多种癌症疗法和联合疗法中得到广泛应用。降低 Cu2+/Cu+ 的浓度是另一种杀癌方法,而螯合剂可以满足这一需求。更重要的是,螯合剂为进一步的研究指明了挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in copper homeostasis-involved tumor theranostics
As the third essential trace element in the human body, copper plays a crucial role in various physiological processes, which lays the foundation for its broad applications in cancer treatments. The overview of copper, including pharmacokinetics, signaling pathways, and homeostasis dysregulation, is hereby discussed. Additionally, cuproptosis, as a newly proposed cell death mechanism associated with copper accumulation, is analyzed and further developed for efficient cancer treatment. Different forms of Cu-based nanoparticles and their advantages, as well as limiting factors, are introduced. Moreover, the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities. In addition, Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential, which are widely explored in diverse cancer therapies and combined therapies. Reducing the concentration of Cu2+/Cu+ is another cancer-killing method, and chelators can meet this need. More importantly, challenges and future prospects are identified for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
期刊最新文献
Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration Recent advances in spatio-temporally controllable systems for management of glioma Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye Electrostatic spraying for fine-tuning particle dimensions to enhance oral bioavailability of poorly water-soluble drugs Metal-organic frameworks in oral drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1