Bilal Ahmad Mir , Ritu Kumari , Gurmeen Rakhra , Parul Parihar , Rachana Singh , Aman Deep Raju , Prabhat Kumar Srivastava , Sheo Mohan Prasad , Richa Singh , Shefali Gulliya
{"title":"硫同化和通过 OMICS 调节非生物胁迫","authors":"Bilal Ahmad Mir , Ritu Kumari , Gurmeen Rakhra , Parul Parihar , Rachana Singh , Aman Deep Raju , Prabhat Kumar Srivastava , Sheo Mohan Prasad , Richa Singh , Shefali Gulliya","doi":"10.1016/j.stress.2024.100630","DOIUrl":null,"url":null,"abstract":"<div><div>Abiotic stress, which includes salinity, drought, heat, and cold, as well as their many combinations, severely reduces crop productivity across the globe each year. Considering the intensified worldwide climatic changes, the effects of these conditions on plant productivity become increasingly more concerning. Sulfur is essential for several metabolic processes, including the organization and control of electron transport. Reductive assimilation and integration into cysteine and methionine, sulfate absorption, and reductive assimilation and integration are the key methods that oxidized and reduced forms of organically bound sulfur get to their different roles. Protective compounds with sulfur, such as glutathione, phytochelatins, S-rich proteins, and several secondary metabolites, are essential for plants to survive abiotic stress, such as dihydroasparagusic acid, hydrogen sulfide, etc. This thorough review covered the regulation of sulfur at the protein and gene transcription levels in response to abiotic stress.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100630"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur assimilation and regulation of abiotic stress via OMICS\",\"authors\":\"Bilal Ahmad Mir , Ritu Kumari , Gurmeen Rakhra , Parul Parihar , Rachana Singh , Aman Deep Raju , Prabhat Kumar Srivastava , Sheo Mohan Prasad , Richa Singh , Shefali Gulliya\",\"doi\":\"10.1016/j.stress.2024.100630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Abiotic stress, which includes salinity, drought, heat, and cold, as well as their many combinations, severely reduces crop productivity across the globe each year. Considering the intensified worldwide climatic changes, the effects of these conditions on plant productivity become increasingly more concerning. Sulfur is essential for several metabolic processes, including the organization and control of electron transport. Reductive assimilation and integration into cysteine and methionine, sulfate absorption, and reductive assimilation and integration are the key methods that oxidized and reduced forms of organically bound sulfur get to their different roles. Protective compounds with sulfur, such as glutathione, phytochelatins, S-rich proteins, and several secondary metabolites, are essential for plants to survive abiotic stress, such as dihydroasparagusic acid, hydrogen sulfide, etc. This thorough review covered the regulation of sulfur at the protein and gene transcription levels in response to abiotic stress.</div></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100630\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
非生物胁迫,包括盐度、干旱、高温和低温,以及它们的多种组合,每年都会严重降低全球作物的产量。考虑到全球气候变化加剧,这些条件对植物生产力的影响越来越令人担忧。硫对于多个代谢过程至关重要,包括电子传输的组织和控制。半胱氨酸和蛋氨酸的还原同化和整合、硫酸盐吸收以及还原同化和整合是氧化型和还原型有机结合硫发挥不同作用的主要方法。含硫的保护性化合物,如谷胱甘肽、植物螯合素、富含 S 的蛋白质和一些次生代谢产物,是植物在二氢天冬酰胺酸、硫化氢等非生物胁迫下生存所必需的。这篇综述深入探讨了硫在蛋白质和基因转录水平上对非生物胁迫的调控。
Sulfur assimilation and regulation of abiotic stress via OMICS
Abiotic stress, which includes salinity, drought, heat, and cold, as well as their many combinations, severely reduces crop productivity across the globe each year. Considering the intensified worldwide climatic changes, the effects of these conditions on plant productivity become increasingly more concerning. Sulfur is essential for several metabolic processes, including the organization and control of electron transport. Reductive assimilation and integration into cysteine and methionine, sulfate absorption, and reductive assimilation and integration are the key methods that oxidized and reduced forms of organically bound sulfur get to their different roles. Protective compounds with sulfur, such as glutathione, phytochelatins, S-rich proteins, and several secondary metabolites, are essential for plants to survive abiotic stress, such as dihydroasparagusic acid, hydrogen sulfide, etc. This thorough review covered the regulation of sulfur at the protein and gene transcription levels in response to abiotic stress.