{"title":"评论 Hajra 等人\"铌铬拉维斯相的高温相稳定性和相变:实验和第一原理计算\"","authors":"Andreas Leineweber , Frank Stein","doi":"10.1016/j.matdes.2024.113373","DOIUrl":null,"url":null,"abstract":"<div><div>This work comments on a recent publication by Hajra et al. (Mater. Design 236 (2023) 112483), which claims to have presented compelling experimental and theoretical evidence in favour of the existence of an equilibrium C14-NbCr<sub>2</sub> high-temperature Laves phase in the Cr-Nb system. In the present comment, evidence and conclusions reported in the paper of Hajra et al. are critically put into context of insight from previous works. From this it is concluded here, that the evidence in favour of an equilibrium C14-NbCr<sub>2</sub> high-temperature Laves phase is, by far, not that compelling as claimed by Hajra et al.. Instead, the most direct evidence presented in the literature does not support the existence of an equilibrium C14-NbCr<sub>2</sub> high-temperature Laves phase. Alternative interpretations of Hajra et al.’s evidence and conclusions are offered, and it is elaborated, which true gaps in knowledge exist concerning the Laves phases in the Cr-Nb system.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113373"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation”\",\"authors\":\"Andreas Leineweber , Frank Stein\",\"doi\":\"10.1016/j.matdes.2024.113373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work comments on a recent publication by Hajra et al. (Mater. Design 236 (2023) 112483), which claims to have presented compelling experimental and theoretical evidence in favour of the existence of an equilibrium C14-NbCr<sub>2</sub> high-temperature Laves phase in the Cr-Nb system. In the present comment, evidence and conclusions reported in the paper of Hajra et al. are critically put into context of insight from previous works. From this it is concluded here, that the evidence in favour of an equilibrium C14-NbCr<sub>2</sub> high-temperature Laves phase is, by far, not that compelling as claimed by Hajra et al.. Instead, the most direct evidence presented in the literature does not support the existence of an equilibrium C14-NbCr<sub>2</sub> high-temperature Laves phase. Alternative interpretations of Hajra et al.’s evidence and conclusions are offered, and it is elaborated, which true gaps in knowledge exist concerning the Laves phases in the Cr-Nb system.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"247 \",\"pages\":\"Article 113373\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007482\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007482","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation”
This work comments on a recent publication by Hajra et al. (Mater. Design 236 (2023) 112483), which claims to have presented compelling experimental and theoretical evidence in favour of the existence of an equilibrium C14-NbCr2 high-temperature Laves phase in the Cr-Nb system. In the present comment, evidence and conclusions reported in the paper of Hajra et al. are critically put into context of insight from previous works. From this it is concluded here, that the evidence in favour of an equilibrium C14-NbCr2 high-temperature Laves phase is, by far, not that compelling as claimed by Hajra et al.. Instead, the most direct evidence presented in the literature does not support the existence of an equilibrium C14-NbCr2 high-temperature Laves phase. Alternative interpretations of Hajra et al.’s evidence and conclusions are offered, and it is elaborated, which true gaps in knowledge exist concerning the Laves phases in the Cr-Nb system.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.