Myeong-rok Ryu , Sungho Yun , Bo-kyong Kim , Daehoon Kang , Gildong Kim , Hyunbae Lee
{"title":"列车低温液化氢储罐在各种振动条件下的滑动效应数值分析","authors":"Myeong-rok Ryu , Sungho Yun , Bo-kyong Kim , Daehoon Kang , Gildong Kim , Hyunbae Lee","doi":"10.1016/j.cryogenics.2024.103961","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effects of hydrogen sloshing on internal pressure, temperature, and fluid behavior liquefied-hydrogen storage tanks designed for train usage by applying the natural frequency and frequency conditions from train vibration test standards. Notably, it investigates the impact on BOG generation using a transient volume-of-fluid phase change model. Here, simulations were conducted at vibrations of 0, 0.53, 1.53, and 3 Hz, which were established using sine wave acceleration. The results demonstrated that sloshing increased with higher frequencies, thereby resulting in a more intense heat transfer between the wall of the tanks and free surface of hydrogen and an increase in the BOG generation. Compared to the 0 Hz baseline, BOG generation increased by 13, 44, and 66 % at 0.53, 1.53, and 3 Hz, respectively.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"143 ","pages":"Article 103961"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of sloshing effects in cryogenic liquefied-hydrogen storage tanks for trains under various vibration conditions\",\"authors\":\"Myeong-rok Ryu , Sungho Yun , Bo-kyong Kim , Daehoon Kang , Gildong Kim , Hyunbae Lee\",\"doi\":\"10.1016/j.cryogenics.2024.103961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the effects of hydrogen sloshing on internal pressure, temperature, and fluid behavior liquefied-hydrogen storage tanks designed for train usage by applying the natural frequency and frequency conditions from train vibration test standards. Notably, it investigates the impact on BOG generation using a transient volume-of-fluid phase change model. Here, simulations were conducted at vibrations of 0, 0.53, 1.53, and 3 Hz, which were established using sine wave acceleration. The results demonstrated that sloshing increased with higher frequencies, thereby resulting in a more intense heat transfer between the wall of the tanks and free surface of hydrogen and an increase in the BOG generation. Compared to the 0 Hz baseline, BOG generation increased by 13, 44, and 66 % at 0.53, 1.53, and 3 Hz, respectively.</div></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":\"143 \",\"pages\":\"Article 103961\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001814\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001814","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Numerical analysis of sloshing effects in cryogenic liquefied-hydrogen storage tanks for trains under various vibration conditions
This study examines the effects of hydrogen sloshing on internal pressure, temperature, and fluid behavior liquefied-hydrogen storage tanks designed for train usage by applying the natural frequency and frequency conditions from train vibration test standards. Notably, it investigates the impact on BOG generation using a transient volume-of-fluid phase change model. Here, simulations were conducted at vibrations of 0, 0.53, 1.53, and 3 Hz, which were established using sine wave acceleration. The results demonstrated that sloshing increased with higher frequencies, thereby resulting in a more intense heat transfer between the wall of the tanks and free surface of hydrogen and an increase in the BOG generation. Compared to the 0 Hz baseline, BOG generation increased by 13, 44, and 66 % at 0.53, 1.53, and 3 Hz, respectively.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics