Yueao Jian , Peng Hu , Qihan Zhou , Nan Zhang , Deng’an Cai , Guangming Zhou , Xinwei Wang
{"title":"针对 CFRP 复合材料薄板超高循环随机疲劳性能的新型双向 LSTM 网络模型","authors":"Yueao Jian , Peng Hu , Qihan Zhou , Nan Zhang , Deng’an Cai , Guangming Zhou , Xinwei Wang","doi":"10.1016/j.ijfatigue.2024.108627","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel Double-layer Bidirectional Long Short-Term Memory (BiLSTM) neural network model, shorted as TDA-BiLSTM, which integrates Transfer learning and Attention mechanisms. The model aims to predict the fatigue life of carbon fiber reinforced polymer (CFRP) thin plate structures subjected to very high cycle random vibration fatigue loads. Distinct from conventional servo-hydraulic and ultrasonic fatigue testing methods, this research pioneers the use of a vibration table for very high cycle fatigue (VHCF) testing to fill the gap in the field. By training and validating data across various life ranges, the TDA-BiLSTM model demonstrates significant advantages in training speed and predicting accuracy. Its bidirectional structure and attention mechanism effectively capture complex patterns and long-term dependencies in sequence data. Experimental results indicate that the TDA-BiLSTM model achieves significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to Long Short-Term Memory (LSTM) and Long Short-Term Memory with Transfer learning (Tr-LSTM) models across different life ranges on the ε-N curve, indicating higher accuracy and stability in strain life prediction tasks. Additionally, an analysis of typical damage areas using Scanning Electron Microscopy (SEM) reveals the failure mechanisms of CFRP plates under very high cycle vibration fatigue loads.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108627"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel bidirectional LSTM network model for very high cycle random fatigue performance of CFRP composite thin plates\",\"authors\":\"Yueao Jian , Peng Hu , Qihan Zhou , Nan Zhang , Deng’an Cai , Guangming Zhou , Xinwei Wang\",\"doi\":\"10.1016/j.ijfatigue.2024.108627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a novel Double-layer Bidirectional Long Short-Term Memory (BiLSTM) neural network model, shorted as TDA-BiLSTM, which integrates Transfer learning and Attention mechanisms. The model aims to predict the fatigue life of carbon fiber reinforced polymer (CFRP) thin plate structures subjected to very high cycle random vibration fatigue loads. Distinct from conventional servo-hydraulic and ultrasonic fatigue testing methods, this research pioneers the use of a vibration table for very high cycle fatigue (VHCF) testing to fill the gap in the field. By training and validating data across various life ranges, the TDA-BiLSTM model demonstrates significant advantages in training speed and predicting accuracy. Its bidirectional structure and attention mechanism effectively capture complex patterns and long-term dependencies in sequence data. Experimental results indicate that the TDA-BiLSTM model achieves significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to Long Short-Term Memory (LSTM) and Long Short-Term Memory with Transfer learning (Tr-LSTM) models across different life ranges on the ε-N curve, indicating higher accuracy and stability in strain life prediction tasks. Additionally, an analysis of typical damage areas using Scanning Electron Microscopy (SEM) reveals the failure mechanisms of CFRP plates under very high cycle vibration fatigue loads.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108627\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324004869\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324004869","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A novel bidirectional LSTM network model for very high cycle random fatigue performance of CFRP composite thin plates
This study proposes a novel Double-layer Bidirectional Long Short-Term Memory (BiLSTM) neural network model, shorted as TDA-BiLSTM, which integrates Transfer learning and Attention mechanisms. The model aims to predict the fatigue life of carbon fiber reinforced polymer (CFRP) thin plate structures subjected to very high cycle random vibration fatigue loads. Distinct from conventional servo-hydraulic and ultrasonic fatigue testing methods, this research pioneers the use of a vibration table for very high cycle fatigue (VHCF) testing to fill the gap in the field. By training and validating data across various life ranges, the TDA-BiLSTM model demonstrates significant advantages in training speed and predicting accuracy. Its bidirectional structure and attention mechanism effectively capture complex patterns and long-term dependencies in sequence data. Experimental results indicate that the TDA-BiLSTM model achieves significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to Long Short-Term Memory (LSTM) and Long Short-Term Memory with Transfer learning (Tr-LSTM) models across different life ranges on the ε-N curve, indicating higher accuracy and stability in strain life prediction tasks. Additionally, an analysis of typical damage areas using Scanning Electron Microscopy (SEM) reveals the failure mechanisms of CFRP plates under very high cycle vibration fatigue loads.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.