Jiachang Xiao , Junting Liu , Zheng Guo , Peiran Chen , Fengyun Lei , Wei Lu , Chengyao Jiang , Yanwen Li , Mengyao Li , Yangxia Zheng
{"title":"2,4-Epibrassinolide 可延缓芦笋贮藏过程中的木质化、软化和品质下降","authors":"Jiachang Xiao , Junting Liu , Zheng Guo , Peiran Chen , Fengyun Lei , Wei Lu , Chengyao Jiang , Yanwen Li , Mengyao Li , Yangxia Zheng","doi":"10.1016/j.postharvbio.2024.113270","DOIUrl":null,"url":null,"abstract":"<div><div>Asparagus is prone to weight loss and aging after harvest. 2,4-Epibrassinolide (EBR), a brassinosteroid hormone, is widely involved in plant growth, development, and stress response. This study investigated the effects of different EBR treatments (0, 2.5, 5, 7.5, 10, and 15 μmol L<sup>−1</sup>) on the sensory quality and biochemical substance content of asparagus stored at 4°C for 5, 10, 15, 20, and 25 d. The results showed that EBR application effectively mitigates weight loss and quality deterioration during storage. This effect was evidenced by higher firmness, total chlorophyll content, soluble protein, total saponins, mechanical tissue thickness, and lower lignin content and malondialdehyde levels. Moreover, EBR enhances the antioxidant capacity of asparagus by regulating the enzymatic antioxidant system (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities) and the non-enzymatic antioxidant system (DPPH free radical scavenging ability, vitamin C, total phenol, total flavonoids, rutin, amino acids, and proline content), thus, reducing oxidative damage. Furthermore, transcriptome analysis revealed that the softening and aging of asparagus are closely related to phenylpropanoid biosynthesis and starch and sucrose metabolism. 2,4-Epibrassinolide inhibits lignification by reducing the expression of lignin synthesis-related genes (<em>PAL</em>, <em>C4H</em>, <em>4CL</em>, <em>COMT</em>, <em>CCR</em>, <em>CAD</em>, and <em>POD</em>). Additionally, EBR delays asparagus softening by suppressing cell wall degradation-related genes (<em>Egase</em>, <em>β-BGL</em>, <em>PE</em>, and <em>PG</em>). Weighted Gene Co-expression Network Analysis (WGCNA) identified 12 lignification-related candidate genes and five softening-related candidate genes. Additionally, the RT-qPCR expression of the 17 candidate genes was consistent with the transcriptome results. Altogether, this study provides a basis for EBR application in asparagus storage and preservation and offers insights into the molecular mechanisms by which EBR delays lignification and softening in asparagus.</div></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"219 ","pages":"Article 113270"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2,4-Epibrassinolide delays lignification, softening, and quality deterioration during asparagus storage\",\"authors\":\"Jiachang Xiao , Junting Liu , Zheng Guo , Peiran Chen , Fengyun Lei , Wei Lu , Chengyao Jiang , Yanwen Li , Mengyao Li , Yangxia Zheng\",\"doi\":\"10.1016/j.postharvbio.2024.113270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Asparagus is prone to weight loss and aging after harvest. 2,4-Epibrassinolide (EBR), a brassinosteroid hormone, is widely involved in plant growth, development, and stress response. This study investigated the effects of different EBR treatments (0, 2.5, 5, 7.5, 10, and 15 μmol L<sup>−1</sup>) on the sensory quality and biochemical substance content of asparagus stored at 4°C for 5, 10, 15, 20, and 25 d. The results showed that EBR application effectively mitigates weight loss and quality deterioration during storage. This effect was evidenced by higher firmness, total chlorophyll content, soluble protein, total saponins, mechanical tissue thickness, and lower lignin content and malondialdehyde levels. Moreover, EBR enhances the antioxidant capacity of asparagus by regulating the enzymatic antioxidant system (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities) and the non-enzymatic antioxidant system (DPPH free radical scavenging ability, vitamin C, total phenol, total flavonoids, rutin, amino acids, and proline content), thus, reducing oxidative damage. Furthermore, transcriptome analysis revealed that the softening and aging of asparagus are closely related to phenylpropanoid biosynthesis and starch and sucrose metabolism. 2,4-Epibrassinolide inhibits lignification by reducing the expression of lignin synthesis-related genes (<em>PAL</em>, <em>C4H</em>, <em>4CL</em>, <em>COMT</em>, <em>CCR</em>, <em>CAD</em>, and <em>POD</em>). Additionally, EBR delays asparagus softening by suppressing cell wall degradation-related genes (<em>Egase</em>, <em>β-BGL</em>, <em>PE</em>, and <em>PG</em>). Weighted Gene Co-expression Network Analysis (WGCNA) identified 12 lignification-related candidate genes and five softening-related candidate genes. Additionally, the RT-qPCR expression of the 17 candidate genes was consistent with the transcriptome results. Altogether, this study provides a basis for EBR application in asparagus storage and preservation and offers insights into the molecular mechanisms by which EBR delays lignification and softening in asparagus.</div></div>\",\"PeriodicalId\":20328,\"journal\":{\"name\":\"Postharvest Biology and Technology\",\"volume\":\"219 \",\"pages\":\"Article 113270\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postharvest Biology and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925521424005155\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424005155","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
2,4-Epibrassinolide delays lignification, softening, and quality deterioration during asparagus storage
Asparagus is prone to weight loss and aging after harvest. 2,4-Epibrassinolide (EBR), a brassinosteroid hormone, is widely involved in plant growth, development, and stress response. This study investigated the effects of different EBR treatments (0, 2.5, 5, 7.5, 10, and 15 μmol L−1) on the sensory quality and biochemical substance content of asparagus stored at 4°C for 5, 10, 15, 20, and 25 d. The results showed that EBR application effectively mitigates weight loss and quality deterioration during storage. This effect was evidenced by higher firmness, total chlorophyll content, soluble protein, total saponins, mechanical tissue thickness, and lower lignin content and malondialdehyde levels. Moreover, EBR enhances the antioxidant capacity of asparagus by regulating the enzymatic antioxidant system (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities) and the non-enzymatic antioxidant system (DPPH free radical scavenging ability, vitamin C, total phenol, total flavonoids, rutin, amino acids, and proline content), thus, reducing oxidative damage. Furthermore, transcriptome analysis revealed that the softening and aging of asparagus are closely related to phenylpropanoid biosynthesis and starch and sucrose metabolism. 2,4-Epibrassinolide inhibits lignification by reducing the expression of lignin synthesis-related genes (PAL, C4H, 4CL, COMT, CCR, CAD, and POD). Additionally, EBR delays asparagus softening by suppressing cell wall degradation-related genes (Egase, β-BGL, PE, and PG). Weighted Gene Co-expression Network Analysis (WGCNA) identified 12 lignification-related candidate genes and five softening-related candidate genes. Additionally, the RT-qPCR expression of the 17 candidate genes was consistent with the transcriptome results. Altogether, this study provides a basis for EBR application in asparagus storage and preservation and offers insights into the molecular mechanisms by which EBR delays lignification and softening in asparagus.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.