{"title":"实现部分监控:让步永远不嫌早","authors":"Angelo Ferrando , Rafael C. Cardoso","doi":"10.1016/j.scico.2024.103220","DOIUrl":null,"url":null,"abstract":"<div><div>Runtime Verification is a lightweight formal verification technique used to verify whether a system behaves as expected at runtime. Expected behaviour is typically formally specified using properties, which are used to automatically synthesise monitors. Properties that can be verified at runtime by a monitor are called <em>monitorable</em>, while those that cannot are termed <em>non-monitorable</em>. In this paper, we revisit the notion of monitorability and demonstrate how <em>non-monitorable</em> properties can still be used to generate <em>partial</em> monitors. We tackle this from two different perspectives: (i) by recognising that a monitor can give up on monitoring the property under analysis if it recognises that the monitoring will never conclude the satisfaction or violation of the property; (ii) by recognising that a monitor can give up on events that are not necessary for successful monitoring of the property under analysis. By considering these two aspects, we present how to achieve partial monitoring of Linear Temporal Logic properties by building upon the standard monitor construction. Finally, we present a prototype implementation of our approach and its application to a remote inspection case study, as well as a set of evaluation experiments to stress test our approach using synthetic properties.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"240 ","pages":"Article 103220"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards partial monitoring: Never too early to give in\",\"authors\":\"Angelo Ferrando , Rafael C. Cardoso\",\"doi\":\"10.1016/j.scico.2024.103220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Runtime Verification is a lightweight formal verification technique used to verify whether a system behaves as expected at runtime. Expected behaviour is typically formally specified using properties, which are used to automatically synthesise monitors. Properties that can be verified at runtime by a monitor are called <em>monitorable</em>, while those that cannot are termed <em>non-monitorable</em>. In this paper, we revisit the notion of monitorability and demonstrate how <em>non-monitorable</em> properties can still be used to generate <em>partial</em> monitors. We tackle this from two different perspectives: (i) by recognising that a monitor can give up on monitoring the property under analysis if it recognises that the monitoring will never conclude the satisfaction or violation of the property; (ii) by recognising that a monitor can give up on events that are not necessary for successful monitoring of the property under analysis. By considering these two aspects, we present how to achieve partial monitoring of Linear Temporal Logic properties by building upon the standard monitor construction. Finally, we present a prototype implementation of our approach and its application to a remote inspection case study, as well as a set of evaluation experiments to stress test our approach using synthetic properties.</div></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"240 \",\"pages\":\"Article 103220\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324001436\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324001436","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Towards partial monitoring: Never too early to give in
Runtime Verification is a lightweight formal verification technique used to verify whether a system behaves as expected at runtime. Expected behaviour is typically formally specified using properties, which are used to automatically synthesise monitors. Properties that can be verified at runtime by a monitor are called monitorable, while those that cannot are termed non-monitorable. In this paper, we revisit the notion of monitorability and demonstrate how non-monitorable properties can still be used to generate partial monitors. We tackle this from two different perspectives: (i) by recognising that a monitor can give up on monitoring the property under analysis if it recognises that the monitoring will never conclude the satisfaction or violation of the property; (ii) by recognising that a monitor can give up on events that are not necessary for successful monitoring of the property under analysis. By considering these two aspects, we present how to achieve partial monitoring of Linear Temporal Logic properties by building upon the standard monitor construction. Finally, we present a prototype implementation of our approach and its application to a remote inspection case study, as well as a set of evaluation experiments to stress test our approach using synthetic properties.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.