掺入共价有机纳米片交联氧化石墨烯的 SPEEK 膜对钒氧化还原液流电池的选择性增强

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-10-15 DOI:10.1016/j.memsci.2024.123410
Yuxia Zhang , Haojie Liu , Min Liu , Xiangzhong Li , Yitian Zhang , Hongzhuo Sun , Haifeng Shi , Yuanyuan Feng
{"title":"掺入共价有机纳米片交联氧化石墨烯的 SPEEK 膜对钒氧化还原液流电池的选择性增强","authors":"Yuxia Zhang ,&nbsp;Haojie Liu ,&nbsp;Min Liu ,&nbsp;Xiangzhong Li ,&nbsp;Yitian Zhang ,&nbsp;Hongzhuo Sun ,&nbsp;Haifeng Shi ,&nbsp;Yuanyuan Feng","doi":"10.1016/j.memsci.2024.123410","DOIUrl":null,"url":null,"abstract":"<div><div>It is difficult for sulfonated poly(ether ether ketone) (SPEEK) to possess both high proton conduction and vanadium resistance owing to the degree of sulfonation. Herein, the composite membranes (S/GO-TpTG) with cationic covalent organic nanosheet (TpTG) crosslinked graphene oxide (GO-TpTG) are prepared to enhance selectivity by optimizing the ion transport channels. The GO-TpTG can efficiently transport protons utilizing its cationic porous structure and acid-base pairs' interaction with SPEEK. Meanwhile, it can block vanadium ions through the Donnan exclusion and physical blocking effects. The S/GO-TpTG membrane with 3 wt% GO-TpTG exhibits excellent proton conductivity (82.7 mS cm<sup>-1</sup>) and selectivity (77.9×10<sup>-7</sup> cm<sup>2</sup> min<sup>-1</sup>). The VRFB with this membrane exhibits excellent energy efficiency (88.6 - 81.0 % at 100-200 mA cm<sup>-2</sup>), cycle durability, and self-discharge time (209.8 h). This study confirms the great potential of GO-COF to balance proton conductivity and vanadium resistance, and provides an effective strategy to optimize proton channels.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123410"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced selectivity of SPEEK membrane incorporated covalent organic nanosheet crosslinked graphene oxide for vanadium redox flow battery\",\"authors\":\"Yuxia Zhang ,&nbsp;Haojie Liu ,&nbsp;Min Liu ,&nbsp;Xiangzhong Li ,&nbsp;Yitian Zhang ,&nbsp;Hongzhuo Sun ,&nbsp;Haifeng Shi ,&nbsp;Yuanyuan Feng\",\"doi\":\"10.1016/j.memsci.2024.123410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is difficult for sulfonated poly(ether ether ketone) (SPEEK) to possess both high proton conduction and vanadium resistance owing to the degree of sulfonation. Herein, the composite membranes (S/GO-TpTG) with cationic covalent organic nanosheet (TpTG) crosslinked graphene oxide (GO-TpTG) are prepared to enhance selectivity by optimizing the ion transport channels. The GO-TpTG can efficiently transport protons utilizing its cationic porous structure and acid-base pairs' interaction with SPEEK. Meanwhile, it can block vanadium ions through the Donnan exclusion and physical blocking effects. The S/GO-TpTG membrane with 3 wt% GO-TpTG exhibits excellent proton conductivity (82.7 mS cm<sup>-1</sup>) and selectivity (77.9×10<sup>-7</sup> cm<sup>2</sup> min<sup>-1</sup>). The VRFB with this membrane exhibits excellent energy efficiency (88.6 - 81.0 % at 100-200 mA cm<sup>-2</sup>), cycle durability, and self-discharge time (209.8 h). This study confirms the great potential of GO-COF to balance proton conductivity and vanadium resistance, and provides an effective strategy to optimize proton channels.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"714 \",\"pages\":\"Article 123410\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824010044\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010044","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于磺化程度的原因,磺化聚醚醚酮(SPEEK)很难同时具有高质子传导性和耐钒性。本文制备了带有阳离子共价有机纳米片(TpTG)交联氧化石墨烯(GO-TpTG)的复合膜(S/GO-TpTG),通过优化离子传输通道来提高选择性。GO-TpTG 可利用其阳离子多孔结构和与 SPEEK 的酸碱对相互作用有效地传输质子。同时,它还能通过唐南排阻效应和物理阻断效应阻断钒离子。含有 3 wt% GO-TpTG 的 S/GO-TpTG 膜具有出色的质子传导性(82.7 mS cm-1)和选择性(77.9×10-7 cm2 min-1)。使用这种膜的 VRFB 在能量效率(100-200 mA cm-2 时为 88.6 - 81.0 %)、循环耐久性和自放电时间(209.8 h)方面都表现出色。这项研究证实了 GO-COF 在平衡质子传导性和钒电阻方面的巨大潜力,并为优化质子通道提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced selectivity of SPEEK membrane incorporated covalent organic nanosheet crosslinked graphene oxide for vanadium redox flow battery
It is difficult for sulfonated poly(ether ether ketone) (SPEEK) to possess both high proton conduction and vanadium resistance owing to the degree of sulfonation. Herein, the composite membranes (S/GO-TpTG) with cationic covalent organic nanosheet (TpTG) crosslinked graphene oxide (GO-TpTG) are prepared to enhance selectivity by optimizing the ion transport channels. The GO-TpTG can efficiently transport protons utilizing its cationic porous structure and acid-base pairs' interaction with SPEEK. Meanwhile, it can block vanadium ions through the Donnan exclusion and physical blocking effects. The S/GO-TpTG membrane with 3 wt% GO-TpTG exhibits excellent proton conductivity (82.7 mS cm-1) and selectivity (77.9×10-7 cm2 min-1). The VRFB with this membrane exhibits excellent energy efficiency (88.6 - 81.0 % at 100-200 mA cm-2), cycle durability, and self-discharge time (209.8 h). This study confirms the great potential of GO-COF to balance proton conductivity and vanadium resistance, and provides an effective strategy to optimize proton channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Interfacial polymerization of COF-polyamide composite membranes modified with ionic liquids for CO2 separations Cross-layer alternating paired charge distribution to boost proton conductivity of COF lamellar membrane Editorial Board High performance anion exchange membrane containing large, rigid branching structural unit for fuel cell and electrodialysis applications Design of non-fluorinated proton exchange membranes from Poly(Terphenyl fluorenyl isatin) with fluorene-linked sulfonate groups and microblock structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1