Samar , N. Amjed , A. Naz , A.M. Wajid , M. Eman , M.A. Saeed
{"title":"评估回旋加速器生产医用放射性核素 201Pb→201Tl 和 203Pb 的截面数据","authors":"Samar , N. Amjed , A. Naz , A.M. Wajid , M. Eman , M.A. Saeed","doi":"10.1016/j.radphyschem.2024.112294","DOIUrl":null,"url":null,"abstract":"<div><div>Lead Isotopes can be effectively used in nuclear medicine, <sup>203</sup>Pb forms a theranostic pair with <sup>212</sup>Pb whereas <sup>201</sup>Pb→ <sup>201</sup>Tl, facilitate the production of <sup>201</sup>Tl via the generator system. The aim of this work was to achieve the high purity production of <sup>203</sup>Pb and <sup>201</sup>Tl via a cyclotron. To achieve this, several charged particle induced reactions namely <sup>205</sup>Tl(p,3n)<sup>203</sup>Pb, <sup>205</sup>Tl(d,4n)<sup>203</sup>Pb, <sup>205</sup>Tl(p,5n)<sup>201</sup>Pb→<sup>201</sup>Tl, <sup>205</sup>Tl(d,6n)<sup>201</sup>Pb→<sup>201</sup>Tl, <sup>203</sup>Tl(p,3n)<sup>201</sup>Pb→<sup>201</sup>Tl, and <sup>203</sup>Tl(d,4n)<sup>201</sup>Pb→<sup>201</sup>Tl were evaluated. First the consistency and reliability of the experimental data were ensured by using established nuclear model codes like TALYS 1.9 and EMPIRE 3.2. A robust methodology, based on experimental data and theoretical nuclear models, was used to generate the recommended cross sections for each production route and associated radioisotopic impurities. The thick target yields were calculated for each production route and its corresponding impurity reaction by utilizing the recommended/reference data. Following a thorough analysis and comparison of the evaluated production routes, it was concluded that the most promising options are <sup>205</sup>Tl(d,4n)<sup>203</sup>Pb and <sup>203</sup>Tl(p,3n)<sup>201</sup>Pb→<sup>201</sup>Tl. Their optimum conditions were determined as E<sub>d</sub> = 30 → 21 MeV and Ep = 30 → 21 MeV with integral yields of 568.9 MBq/μAh and 1223.5 MBq/μAh respectively.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"226 ","pages":"Article 112294"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the cross section data for cyclotron production of medical radionuclides 201Pb→201Tl and 203Pb\",\"authors\":\"Samar , N. Amjed , A. Naz , A.M. Wajid , M. Eman , M.A. Saeed\",\"doi\":\"10.1016/j.radphyschem.2024.112294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lead Isotopes can be effectively used in nuclear medicine, <sup>203</sup>Pb forms a theranostic pair with <sup>212</sup>Pb whereas <sup>201</sup>Pb→ <sup>201</sup>Tl, facilitate the production of <sup>201</sup>Tl via the generator system. The aim of this work was to achieve the high purity production of <sup>203</sup>Pb and <sup>201</sup>Tl via a cyclotron. To achieve this, several charged particle induced reactions namely <sup>205</sup>Tl(p,3n)<sup>203</sup>Pb, <sup>205</sup>Tl(d,4n)<sup>203</sup>Pb, <sup>205</sup>Tl(p,5n)<sup>201</sup>Pb→<sup>201</sup>Tl, <sup>205</sup>Tl(d,6n)<sup>201</sup>Pb→<sup>201</sup>Tl, <sup>203</sup>Tl(p,3n)<sup>201</sup>Pb→<sup>201</sup>Tl, and <sup>203</sup>Tl(d,4n)<sup>201</sup>Pb→<sup>201</sup>Tl were evaluated. First the consistency and reliability of the experimental data were ensured by using established nuclear model codes like TALYS 1.9 and EMPIRE 3.2. A robust methodology, based on experimental data and theoretical nuclear models, was used to generate the recommended cross sections for each production route and associated radioisotopic impurities. The thick target yields were calculated for each production route and its corresponding impurity reaction by utilizing the recommended/reference data. Following a thorough analysis and comparison of the evaluated production routes, it was concluded that the most promising options are <sup>205</sup>Tl(d,4n)<sup>203</sup>Pb and <sup>203</sup>Tl(p,3n)<sup>201</sup>Pb→<sup>201</sup>Tl. Their optimum conditions were determined as E<sub>d</sub> = 30 → 21 MeV and Ep = 30 → 21 MeV with integral yields of 568.9 MBq/μAh and 1223.5 MBq/μAh respectively.</div></div>\",\"PeriodicalId\":20861,\"journal\":{\"name\":\"Radiation Physics and Chemistry\",\"volume\":\"226 \",\"pages\":\"Article 112294\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969806X24007862\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X24007862","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Evaluation of the cross section data for cyclotron production of medical radionuclides 201Pb→201Tl and 203Pb
Lead Isotopes can be effectively used in nuclear medicine, 203Pb forms a theranostic pair with 212Pb whereas 201Pb→ 201Tl, facilitate the production of 201Tl via the generator system. The aim of this work was to achieve the high purity production of 203Pb and 201Tl via a cyclotron. To achieve this, several charged particle induced reactions namely 205Tl(p,3n)203Pb, 205Tl(d,4n)203Pb, 205Tl(p,5n)201Pb→201Tl, 205Tl(d,6n)201Pb→201Tl, 203Tl(p,3n)201Pb→201Tl, and 203Tl(d,4n)201Pb→201Tl were evaluated. First the consistency and reliability of the experimental data were ensured by using established nuclear model codes like TALYS 1.9 and EMPIRE 3.2. A robust methodology, based on experimental data and theoretical nuclear models, was used to generate the recommended cross sections for each production route and associated radioisotopic impurities. The thick target yields were calculated for each production route and its corresponding impurity reaction by utilizing the recommended/reference data. Following a thorough analysis and comparison of the evaluated production routes, it was concluded that the most promising options are 205Tl(d,4n)203Pb and 203Tl(p,3n)201Pb→201Tl. Their optimum conditions were determined as Ed = 30 → 21 MeV and Ep = 30 → 21 MeV with integral yields of 568.9 MBq/μAh and 1223.5 MBq/μAh respectively.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.