基于自我表示的张量补全问题方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-07 DOI:10.1016/j.cam.2024.116297
Faezeh Aghamohammadi, Fatemeh Shakeri
{"title":"基于自我表示的张量补全问题方法","authors":"Faezeh Aghamohammadi,&nbsp;Fatemeh Shakeri","doi":"10.1016/j.cam.2024.116297","DOIUrl":null,"url":null,"abstract":"<div><div>Tensor, the higher-order data array, naturally arises in many fields, such as information sciences, seismic data reconstruction, physics, video inpainting and so on. In this paper, we intend to provide a new model to recover a tensor, based on self-representation, for the all-mode unfoldings of the desired tensor, regardless of the tensor rank. The suggested idea generalizes self-representation to tensor and recovers an incomplete tensor by reconstructing one fiber by others in such a way that they all belong to the same subspace. We design least-square and low-rank self-representation algorithms based on the Linearized Alternating Direction Method utilizing this concept. We show that the proposed algorithms converge to the rank-minimization of the incomplete tensor.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self representation based methods for tensor completion problem\",\"authors\":\"Faezeh Aghamohammadi,&nbsp;Fatemeh Shakeri\",\"doi\":\"10.1016/j.cam.2024.116297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tensor, the higher-order data array, naturally arises in many fields, such as information sciences, seismic data reconstruction, physics, video inpainting and so on. In this paper, we intend to provide a new model to recover a tensor, based on self-representation, for the all-mode unfoldings of the desired tensor, regardless of the tensor rank. The suggested idea generalizes self-representation to tensor and recovers an incomplete tensor by reconstructing one fiber by others in such a way that they all belong to the same subspace. We design least-square and low-rank self-representation algorithms based on the Linearized Alternating Direction Method utilizing this concept. We show that the proposed algorithms converge to the rank-minimization of the incomplete tensor.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

张量作为一种高阶数据阵列,自然出现在信息科学、地震数据重建、物理学、视频绘制等诸多领域。在本文中,我们打算提供一种新的模型来恢复张量,该模型基于自表示,适用于所需张量的全模式展开,而不受张量秩的影响。我们提出的想法将自表示法推广到张量,并通过用其他纤维重构一条纤维来恢复一个不完整的张量,从而使它们都属于同一个子空间。我们利用这一概念设计了基于线性交替方向法的最小平方和低阶自表示算法。我们证明,所提出的算法收敛于不完整张量的秩最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self representation based methods for tensor completion problem
Tensor, the higher-order data array, naturally arises in many fields, such as information sciences, seismic data reconstruction, physics, video inpainting and so on. In this paper, we intend to provide a new model to recover a tensor, based on self-representation, for the all-mode unfoldings of the desired tensor, regardless of the tensor rank. The suggested idea generalizes self-representation to tensor and recovers an incomplete tensor by reconstructing one fiber by others in such a way that they all belong to the same subspace. We design least-square and low-rank self-representation algorithms based on the Linearized Alternating Direction Method utilizing this concept. We show that the proposed algorithms converge to the rank-minimization of the incomplete tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1