这很复杂:整合元件和共轭元件与其细菌宿主之间的关系

IF 5.9 2区 生物学 Q1 MICROBIOLOGY Current opinion in microbiology Pub Date : 2024-10-18 DOI:10.1016/j.mib.2024.102556
Alexa FS Gomberg, Alan D Grossman
{"title":"这很复杂:整合元件和共轭元件与其细菌宿主之间的关系","authors":"Alexa FS Gomberg,&nbsp;Alan D Grossman","doi":"10.1016/j.mib.2024.102556","DOIUrl":null,"url":null,"abstract":"<div><div>Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICE<em>clc</em>, Tn<em>916</em>, and Tn<em>Smu1</em>) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICE<em>clc</em> and Tn<em>916</em>, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE–host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.</div></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"82 ","pages":"Article 102556"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"It's complicated: relationships between integrative and conjugative elements and their bacterial hosts\",\"authors\":\"Alexa FS Gomberg,&nbsp;Alan D Grossman\",\"doi\":\"10.1016/j.mib.2024.102556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICE<em>clc</em>, Tn<em>916</em>, and Tn<em>Smu1</em>) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICE<em>clc</em> and Tn<em>916</em>, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE–host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.</div></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"82 \",\"pages\":\"Article 102556\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369527424001322\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424001322","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

整合与共轭元件(ICEs)通常整合在细菌宿主染色体中。它们可以切除、复制,并在细胞间转移。其中许多含有赋予宿主细胞表型的基因,包括抗生素抗性、特殊代谢、噬菌体防御以及共生或致病决定因子。最近的研究发现,至少有三种 ICE(ICEclc、Tn916 和 TnSmu1)会在元素激活时导致宿主细胞生长停滞或死亡。这篇综述强调了 ICE 与宿主之间复杂的相互作用,包括宿主细胞付出重大代价的最新实例。我们对比了 ICEclc 和 Tn916 这两个杀灭实例,在这两个实例中,杀灭分别有利于或损害了共轭作用,并强调了了解 ICE-宿主关系对共轭作用影响的重要性。ICE 通常只在群体中的一小部分细胞中活跃,我们将讨论如何揭示通常发生在一小部分宿主细胞中的表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
It's complicated: relationships between integrative and conjugative elements and their bacterial hosts
Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICEclc, Tn916, and TnSmu1) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICEclc and Tn916, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE–host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
期刊最新文献
Temporospatial control of topoisomerases by essential cellular processes Editorial overview: Human fungal pathogens: An increasing threat It's complicated: relationships between integrative and conjugative elements and their bacterial hosts How do bacteria tune transcription termination efficiency? Temperature structuring of microbial communities on a global scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1