Tao Liu, Yaoji Deng, Keyu Lu, Hui Shen, Junjie Gong, Hong Li
{"title":"带梯度蜂窝结构的非充气轮胎的机械性能分析","authors":"Tao Liu, Yaoji Deng, Keyu Lu, Hui Shen, Junjie Gong, Hong Li","doi":"10.1016/j.jestch.2024.101871","DOIUrl":null,"url":null,"abstract":"<div><div>Non-pneumatic tires have the advantages of high safety and high load-carrying capacity, and have a broad potential for engineering applications. In this paper, the effects of different gradient angles on the static and dynamic performance of honeycomb spoke structure are studied. First of all, according to different gradient and gradient-free Non-Pneumatic Tires (NPTs) are designed and the corresponding finite element models of non-pneumatic tires are established respectively. Then, the static mechanical properties of NPTs are analyzed, including the bearing capacity of NPTs and the stress distribution of NPT components. Finally, the dynamic mechanical properties of gradient-free and gradient NPTs are simulated. The stress characteristics and rolling characteristics of the gradient to the key components of NPTs under dynamic load are analyzed. The results show that different gradients have effects on the radial stiffness of the tire, the maximum stress distribution position of spokes, tire rolling characteristics, and the stress characteristics of other parts of NPTs. The research results provide guidance for the structure design and optimization of non-pneumatic tires.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"59 ","pages":"Article 101871"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties analysis of non-pneumatic tire with gradient honeycomb structure\",\"authors\":\"Tao Liu, Yaoji Deng, Keyu Lu, Hui Shen, Junjie Gong, Hong Li\",\"doi\":\"10.1016/j.jestch.2024.101871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-pneumatic tires have the advantages of high safety and high load-carrying capacity, and have a broad potential for engineering applications. In this paper, the effects of different gradient angles on the static and dynamic performance of honeycomb spoke structure are studied. First of all, according to different gradient and gradient-free Non-Pneumatic Tires (NPTs) are designed and the corresponding finite element models of non-pneumatic tires are established respectively. Then, the static mechanical properties of NPTs are analyzed, including the bearing capacity of NPTs and the stress distribution of NPT components. Finally, the dynamic mechanical properties of gradient-free and gradient NPTs are simulated. The stress characteristics and rolling characteristics of the gradient to the key components of NPTs under dynamic load are analyzed. The results show that different gradients have effects on the radial stiffness of the tire, the maximum stress distribution position of spokes, tire rolling characteristics, and the stress characteristics of other parts of NPTs. The research results provide guidance for the structure design and optimization of non-pneumatic tires.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"59 \",\"pages\":\"Article 101871\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221509862400257X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221509862400257X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical properties analysis of non-pneumatic tire with gradient honeycomb structure
Non-pneumatic tires have the advantages of high safety and high load-carrying capacity, and have a broad potential for engineering applications. In this paper, the effects of different gradient angles on the static and dynamic performance of honeycomb spoke structure are studied. First of all, according to different gradient and gradient-free Non-Pneumatic Tires (NPTs) are designed and the corresponding finite element models of non-pneumatic tires are established respectively. Then, the static mechanical properties of NPTs are analyzed, including the bearing capacity of NPTs and the stress distribution of NPT components. Finally, the dynamic mechanical properties of gradient-free and gradient NPTs are simulated. The stress characteristics and rolling characteristics of the gradient to the key components of NPTs under dynamic load are analyzed. The results show that different gradients have effects on the radial stiffness of the tire, the maximum stress distribution position of spokes, tire rolling characteristics, and the stress characteristics of other parts of NPTs. The research results provide guidance for the structure design and optimization of non-pneumatic tires.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)