带梯度蜂窝结构的非充气轮胎的机械性能分析

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Science and Technology-An International Journal-Jestech Pub Date : 2024-10-18 DOI:10.1016/j.jestch.2024.101871
Tao Liu, Yaoji Deng, Keyu Lu, Hui Shen, Junjie Gong, Hong Li
{"title":"带梯度蜂窝结构的非充气轮胎的机械性能分析","authors":"Tao Liu,&nbsp;Yaoji Deng,&nbsp;Keyu Lu,&nbsp;Hui Shen,&nbsp;Junjie Gong,&nbsp;Hong Li","doi":"10.1016/j.jestch.2024.101871","DOIUrl":null,"url":null,"abstract":"<div><div>Non-pneumatic tires have the advantages of high safety and high load-carrying capacity, and have a broad potential for engineering applications. In this paper, the effects of different gradient angles on the static and dynamic performance of honeycomb spoke structure are studied. First of all, according to different gradient and gradient-free Non-Pneumatic Tires (NPTs) are designed and the corresponding finite element models of non-pneumatic tires are established respectively. Then, the static mechanical properties of NPTs are analyzed, including the bearing capacity of NPTs and the stress distribution of NPT components. Finally, the dynamic mechanical properties of gradient-free and gradient NPTs are simulated. The stress characteristics and rolling characteristics of the gradient to the key components of NPTs under dynamic load are analyzed. The results show that different gradients have effects on the radial stiffness of the tire, the maximum stress distribution position of spokes, tire rolling characteristics, and the stress characteristics of other parts of NPTs. The research results provide guidance for the structure design and optimization of non-pneumatic tires.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"59 ","pages":"Article 101871"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties analysis of non-pneumatic tire with gradient honeycomb structure\",\"authors\":\"Tao Liu,&nbsp;Yaoji Deng,&nbsp;Keyu Lu,&nbsp;Hui Shen,&nbsp;Junjie Gong,&nbsp;Hong Li\",\"doi\":\"10.1016/j.jestch.2024.101871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-pneumatic tires have the advantages of high safety and high load-carrying capacity, and have a broad potential for engineering applications. In this paper, the effects of different gradient angles on the static and dynamic performance of honeycomb spoke structure are studied. First of all, according to different gradient and gradient-free Non-Pneumatic Tires (NPTs) are designed and the corresponding finite element models of non-pneumatic tires are established respectively. Then, the static mechanical properties of NPTs are analyzed, including the bearing capacity of NPTs and the stress distribution of NPT components. Finally, the dynamic mechanical properties of gradient-free and gradient NPTs are simulated. The stress characteristics and rolling characteristics of the gradient to the key components of NPTs under dynamic load are analyzed. The results show that different gradients have effects on the radial stiffness of the tire, the maximum stress distribution position of spokes, tire rolling characteristics, and the stress characteristics of other parts of NPTs. The research results provide guidance for the structure design and optimization of non-pneumatic tires.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"59 \",\"pages\":\"Article 101871\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221509862400257X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221509862400257X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非充气轮胎具有安全性高、承载能力强等优点,在工程应用中具有广阔的潜力。本文研究了不同梯度角对蜂窝辐条结构静态和动态性能的影响。首先,根据不同梯度和无梯度设计了非充气轮胎(NPT),并分别建立了相应的非充气轮胎有限元模型。然后,分析非充气轮胎的静态力学性能,包括非充气轮胎的承载能力和非充气轮胎部件的应力分布。最后,模拟了无梯度和有梯度 NPT 的动态力学性能。分析了在动载荷作用下梯度对 NPT 关键部件的应力特性和滚动特性。结果表明,不同梯度对轮胎径向刚度、辐条最大应力分布位置、轮胎滚动特性以及 NPT 其他部件的应力特性均有影响。研究结果为非充气轮胎的结构设计和优化提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical properties analysis of non-pneumatic tire with gradient honeycomb structure
Non-pneumatic tires have the advantages of high safety and high load-carrying capacity, and have a broad potential for engineering applications. In this paper, the effects of different gradient angles on the static and dynamic performance of honeycomb spoke structure are studied. First of all, according to different gradient and gradient-free Non-Pneumatic Tires (NPTs) are designed and the corresponding finite element models of non-pneumatic tires are established respectively. Then, the static mechanical properties of NPTs are analyzed, including the bearing capacity of NPTs and the stress distribution of NPT components. Finally, the dynamic mechanical properties of gradient-free and gradient NPTs are simulated. The stress characteristics and rolling characteristics of the gradient to the key components of NPTs under dynamic load are analyzed. The results show that different gradients have effects on the radial stiffness of the tire, the maximum stress distribution position of spokes, tire rolling characteristics, and the stress characteristics of other parts of NPTs. The research results provide guidance for the structure design and optimization of non-pneumatic tires.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
期刊最新文献
Entropy generation and heat transfer in Time-Fractional mixed convection of nanofluids in Darcy-Forchheimer porous channel Etching-free fabrication method for silver nanowires-based SERS sensors for enhanced molecule detection AESware: Developing AES-enabled low-power multicore processors leveraging open RISC-V cores with a shared lightweight AES accelerator Sustainability assessment integrating BIM and decision-making for modular slab construction against conventional cast-in-situ 1D model and rule-based calibration strategy to improve the performance of a turbocharged spark ignition engine over the whole engine map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1