利用深度学习预测时空动态:长短期记忆耦合神经网络、自动编码器和物理信息神经网络

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-09 DOI:10.1016/j.physd.2024.134399
Ziyang Zhang , Feifan Zhang , Weixi Gong , Tailai Chen , Luowei Tan , Heng Gui
{"title":"利用深度学习预测时空动态:长短期记忆耦合神经网络、自动编码器和物理信息神经网络","authors":"Ziyang Zhang ,&nbsp;Feifan Zhang ,&nbsp;Weixi Gong ,&nbsp;Tailai Chen ,&nbsp;Luowei Tan ,&nbsp;Heng Gui","doi":"10.1016/j.physd.2024.134399","DOIUrl":null,"url":null,"abstract":"<div><div>Several classic reaction-diffusion models using partial differential equations (PDEs) have been established to elucidate the formation mechanism of vegetation patterns. However, predictive modeling of complex spatiotemporal dynamics using traditional numerical methods can be significantly challenging in many practical scenarios. Physics-Informed Neural Networks (PINNs) provide a new approach to predict the solution of PDEs. However, the generalization of PINNs is not satisfactory when pretrained PINNs is directly used in non-trained space (defined as explorations). This may be attributed to the lack of training in the time dimension. Therefore, a framework (LA-PINNs) is proposed to predict the evolutionary solution of the non-dimensional vegetation-sand model. The framework couples neural networks of Long-Short Terms Memory, Auto-Encoder and Physics-Informed Neural Networks. The predictions of LA-PINNs are much better than those of PINNs. Then we studied the effects of hyperparameters on the accuracy of predictions. Based on training in time dimension by LSTM module and pretraining for quick-training strategy, LA-PINNs can improve the accuracy of explorations.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of spatiotemporal dynamics using deep learning: Coupled neural networks of long short-terms memory, auto-encoder and physics-informed neural networks\",\"authors\":\"Ziyang Zhang ,&nbsp;Feifan Zhang ,&nbsp;Weixi Gong ,&nbsp;Tailai Chen ,&nbsp;Luowei Tan ,&nbsp;Heng Gui\",\"doi\":\"10.1016/j.physd.2024.134399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several classic reaction-diffusion models using partial differential equations (PDEs) have been established to elucidate the formation mechanism of vegetation patterns. However, predictive modeling of complex spatiotemporal dynamics using traditional numerical methods can be significantly challenging in many practical scenarios. Physics-Informed Neural Networks (PINNs) provide a new approach to predict the solution of PDEs. However, the generalization of PINNs is not satisfactory when pretrained PINNs is directly used in non-trained space (defined as explorations). This may be attributed to the lack of training in the time dimension. Therefore, a framework (LA-PINNs) is proposed to predict the evolutionary solution of the non-dimensional vegetation-sand model. The framework couples neural networks of Long-Short Terms Memory, Auto-Encoder and Physics-Informed Neural Networks. The predictions of LA-PINNs are much better than those of PINNs. Then we studied the effects of hyperparameters on the accuracy of predictions. Based on training in time dimension by LSTM module and pretraining for quick-training strategy, LA-PINNs can improve the accuracy of explorations.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892400349X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400349X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了阐明植被形态的形成机制,人们利用偏微分方程(PDEs)建立了一些经典的反应-扩散模型。然而,在许多实际情况下,使用传统数值方法对复杂的时空动态进行预测建模具有很大的挑战性。物理信息神经网络(PINNs)为预测 PDEs 的解提供了一种新方法。然而,当预训练的 PINNs 直接用于非训练空间(定义为探索)时,PINNs 的泛化效果并不理想。这可能是由于缺乏时间维度的训练。因此,我们提出了一个框架(LA-PINNs)来预测非维度植被-沙地模型的演化解。该框架结合了长短期记忆神经网络、自动编码器和物理信息神经网络。LA-PINNs 的预测结果比 PINNs 好得多。然后,我们研究了超参数对预测准确性的影响。基于 LSTM 模块的时间维度训练和快速训练策略的预训练,LA-PINNs 可以提高探索的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of spatiotemporal dynamics using deep learning: Coupled neural networks of long short-terms memory, auto-encoder and physics-informed neural networks
Several classic reaction-diffusion models using partial differential equations (PDEs) have been established to elucidate the formation mechanism of vegetation patterns. However, predictive modeling of complex spatiotemporal dynamics using traditional numerical methods can be significantly challenging in many practical scenarios. Physics-Informed Neural Networks (PINNs) provide a new approach to predict the solution of PDEs. However, the generalization of PINNs is not satisfactory when pretrained PINNs is directly used in non-trained space (defined as explorations). This may be attributed to the lack of training in the time dimension. Therefore, a framework (LA-PINNs) is proposed to predict the evolutionary solution of the non-dimensional vegetation-sand model. The framework couples neural networks of Long-Short Terms Memory, Auto-Encoder and Physics-Informed Neural Networks. The predictions of LA-PINNs are much better than those of PINNs. Then we studied the effects of hyperparameters on the accuracy of predictions. Based on training in time dimension by LSTM module and pretraining for quick-training strategy, LA-PINNs can improve the accuracy of explorations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1