Claudia Moscoso, Jo Skjermo, Hampus Karlsson, Petter Arnesen, Carl-Johan Södersten, Åsa S. Hoem, Gunnar D. Jenssen
{"title":"分析用户接受公路隧道救援室的空间和设计因素:利用虚拟现实技术进行探索性研究","authors":"Claudia Moscoso, Jo Skjermo, Hampus Karlsson, Petter Arnesen, Carl-Johan Södersten, Åsa S. Hoem, Gunnar D. Jenssen","doi":"10.1016/j.firesaf.2024.104272","DOIUrl":null,"url":null,"abstract":"<div><div>In emergency fire situations in road tunnels in which vehicles cannot exit the tunnel, evacuation on foot might be the only alternative. In such scenarios, self-rescue using rescue rooms might provide provisional safe shelter to people trapped in tunnel emergencies. Yet, a stay in a rescue room with unsatisfactory design might contribute to higher levels of distress to the users. The present study examines five different designs of rescue rooms via virtual reality, to study how the different design and spatial factors might affect users' acceptance of such rooms. Thirty-seven people participated in the study, in which both objective (Eye-tracking and heart rate measurement) and subjective data was collected. The results suggest that two factors (i.e. lighting and use of separate areas) increased the feelings of safety and users' acceptance of the rescue rooms. In particular, a container room with blue lighting and separate area for injured people was the favourite among the study participants. The outcomes of this study show that design and spatial factors are crucial if rescue rooms are to be implemented and used in road tunnels.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of spatial and design factors for users' acceptance of rescue rooms in road tunnels: An exploratory study using Virtual Reality\",\"authors\":\"Claudia Moscoso, Jo Skjermo, Hampus Karlsson, Petter Arnesen, Carl-Johan Södersten, Åsa S. Hoem, Gunnar D. Jenssen\",\"doi\":\"10.1016/j.firesaf.2024.104272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In emergency fire situations in road tunnels in which vehicles cannot exit the tunnel, evacuation on foot might be the only alternative. In such scenarios, self-rescue using rescue rooms might provide provisional safe shelter to people trapped in tunnel emergencies. Yet, a stay in a rescue room with unsatisfactory design might contribute to higher levels of distress to the users. The present study examines five different designs of rescue rooms via virtual reality, to study how the different design and spatial factors might affect users' acceptance of such rooms. Thirty-seven people participated in the study, in which both objective (Eye-tracking and heart rate measurement) and subjective data was collected. The results suggest that two factors (i.e. lighting and use of separate areas) increased the feelings of safety and users' acceptance of the rescue rooms. In particular, a container room with blue lighting and separate area for injured people was the favourite among the study participants. The outcomes of this study show that design and spatial factors are crucial if rescue rooms are to be implemented and used in road tunnels.</div></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001851\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001851","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Analysis of spatial and design factors for users' acceptance of rescue rooms in road tunnels: An exploratory study using Virtual Reality
In emergency fire situations in road tunnels in which vehicles cannot exit the tunnel, evacuation on foot might be the only alternative. In such scenarios, self-rescue using rescue rooms might provide provisional safe shelter to people trapped in tunnel emergencies. Yet, a stay in a rescue room with unsatisfactory design might contribute to higher levels of distress to the users. The present study examines five different designs of rescue rooms via virtual reality, to study how the different design and spatial factors might affect users' acceptance of such rooms. Thirty-seven people participated in the study, in which both objective (Eye-tracking and heart rate measurement) and subjective data was collected. The results suggest that two factors (i.e. lighting and use of separate areas) increased the feelings of safety and users' acceptance of the rescue rooms. In particular, a container room with blue lighting and separate area for injured people was the favourite among the study participants. The outcomes of this study show that design and spatial factors are crucial if rescue rooms are to be implemented and used in road tunnels.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.