深度学习预报学的不确定性量化基准

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-10-11 DOI:10.1016/j.ress.2024.110513
Luis Basora , Arthur Viens , Manuel Arias Chao , Xavier Olive
{"title":"深度学习预报学的不确定性量化基准","authors":"Luis Basora ,&nbsp;Arthur Viens ,&nbsp;Manuel Arias Chao ,&nbsp;Xavier Olive","doi":"10.1016/j.ress.2024.110513","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable uncertainty quantification on RUL prediction is crucial for informative decision-making in predictive maintenance. In this context, we assess some of the latest developments in the field of uncertainty quantification for deep learning prognostics. This includes the state-of-the-art variational inference algorithms for Bayesian neural networks (BNN) as well as popular alternatives such as Monte Carlo Dropout (MCD), deep ensembles (DE), and heteroscedastic neural networks (HNN). All the inference techniques share the same inception architecture as functional model. The performance of the methods is evaluated on a subset of the large NASA N-CMAPSS dataset for aircraft engines. The assessment includes RUL prediction accuracy, the quality of predictive uncertainty, and the possibility of breaking down the total predictive uncertainty into its aleatoric and epistemic parts. Although all methods are close in terms of accuracy, we find differences in the way they estimate uncertainty. Thus, DE and MCD generally provide more conservative predictive uncertainty than BNN. Surprisingly, HNN achieve strong results without the added complexity of BNN. None of these methods exhibited strong robustness to out-of-distribution cases, with BNN and HNN methods particularly susceptible to low accuracy and overconfidence. BNN techniques presented anomalous miscalibration issues at the later stages of the system lifetime.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"253 ","pages":"Article 110513"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A benchmark on uncertainty quantification for deep learning prognostics\",\"authors\":\"Luis Basora ,&nbsp;Arthur Viens ,&nbsp;Manuel Arias Chao ,&nbsp;Xavier Olive\",\"doi\":\"10.1016/j.ress.2024.110513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable uncertainty quantification on RUL prediction is crucial for informative decision-making in predictive maintenance. In this context, we assess some of the latest developments in the field of uncertainty quantification for deep learning prognostics. This includes the state-of-the-art variational inference algorithms for Bayesian neural networks (BNN) as well as popular alternatives such as Monte Carlo Dropout (MCD), deep ensembles (DE), and heteroscedastic neural networks (HNN). All the inference techniques share the same inception architecture as functional model. The performance of the methods is evaluated on a subset of the large NASA N-CMAPSS dataset for aircraft engines. The assessment includes RUL prediction accuracy, the quality of predictive uncertainty, and the possibility of breaking down the total predictive uncertainty into its aleatoric and epistemic parts. Although all methods are close in terms of accuracy, we find differences in the way they estimate uncertainty. Thus, DE and MCD generally provide more conservative predictive uncertainty than BNN. Surprisingly, HNN achieve strong results without the added complexity of BNN. None of these methods exhibited strong robustness to out-of-distribution cases, with BNN and HNN methods particularly susceptible to low accuracy and overconfidence. BNN techniques presented anomalous miscalibration issues at the later stages of the system lifetime.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"253 \",\"pages\":\"Article 110513\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024005854\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005854","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

可靠的 RUL 预测不确定性量化对于预测性维护中的信息决策至关重要。在此背景下,我们评估了深度学习预测不确定性量化领域的一些最新进展。这包括最先进的贝叶斯神经网络(BNN)变异推理算法,以及蒙特卡罗剔除(MCD)、深度集合(DE)和异塞神经网络(HNN)等流行的替代算法。所有推理技术都采用与功能模型相同的初始架构。这些方法的性能在 NASA N-CMAPSS 飞机发动机大型数据集的子集上进行了评估。评估内容包括 RUL 预测精度、预测不确定性的质量,以及将总预测不确定性分解为可知部分和认识部分的可能性。尽管所有方法在准确性方面都很接近,但我们发现它们在估计不确定性的方式上存在差异。因此,DE 和 MCD 通常比 BNN 提供更保守的预测不确定性。令人惊讶的是,HNN 在不增加 BNN 复杂性的情况下取得了很好的结果。这些方法都没有表现出对分布外情况的强大鲁棒性,BNN 和 HNN 方法尤其容易受到低准确度和过度自信的影响。BNN 技术在系统寿命的后期阶段出现了异常误判问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A benchmark on uncertainty quantification for deep learning prognostics
Reliable uncertainty quantification on RUL prediction is crucial for informative decision-making in predictive maintenance. In this context, we assess some of the latest developments in the field of uncertainty quantification for deep learning prognostics. This includes the state-of-the-art variational inference algorithms for Bayesian neural networks (BNN) as well as popular alternatives such as Monte Carlo Dropout (MCD), deep ensembles (DE), and heteroscedastic neural networks (HNN). All the inference techniques share the same inception architecture as functional model. The performance of the methods is evaluated on a subset of the large NASA N-CMAPSS dataset for aircraft engines. The assessment includes RUL prediction accuracy, the quality of predictive uncertainty, and the possibility of breaking down the total predictive uncertainty into its aleatoric and epistemic parts. Although all methods are close in terms of accuracy, we find differences in the way they estimate uncertainty. Thus, DE and MCD generally provide more conservative predictive uncertainty than BNN. Surprisingly, HNN achieve strong results without the added complexity of BNN. None of these methods exhibited strong robustness to out-of-distribution cases, with BNN and HNN methods particularly susceptible to low accuracy and overconfidence. BNN techniques presented anomalous miscalibration issues at the later stages of the system lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Image-based remaining useful life prediction through adaptation from simulation to experimental domain Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks Generalized reassigning transform: Algorithm and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1