{"title":"利用荧光和分子对接技术研究α2-肾上腺素能受体激动剂阿普拉洛尼定和牛血清白蛋白之间的分子相互作用","authors":"Ipek Kucuk , Öykü Buket Küçükşahin , Merve Yildirim , Md. Zahirul Kabir , Hülya Silah , Ismail Celik , Bengi Uslu","doi":"10.1016/j.saa.2024.125246","DOIUrl":null,"url":null,"abstract":"<div><div>Apraclonidine (APR) is a potent and selective α2-adrenergic receptor agonist used in the diagnosis of Horner’s Syndrome, and the residuals of APR that accumulate in tissues of animals can cause central nervous and cardiovascular systems influences in humans. Therefore, to understand the influence of APR on human health, we examined the interaction of APR with the carrier protein in plasma, bovine serum albumin (BSA). The BSA fluorescence signal was quenched due to the APU–BSA complex formation and a weak binding affinity was estimated between APR and BSA. The inclusion of fluorescence, UV–vis absorption, molecular docking, and dynamics simulation techniques employed to broadly investigate the combination of APR with BSA at typical physiological conditions. The thermodynamic results revealed that enthalpy (ΔH<sup>0</sup>) and entropy (ΔS<sup>0</sup>) changes were computed as +11.14 kJ mol<sup>−1</sup> and +97.56 J mol<sup>−1</sup> K<sup>−1</sup>, respectively, which represented the binding is principally entropy-driven and the hydrophobic forces acting a significant role in the reaction. Analysis of synchronous and 3-D fluorescence signals revealed microenvironmental variations close to BSA’s Trp and Tyr residues upon APR addition. Both the competitive site marker as well as molecular docking results detected that APR exhibited a stronger binding affinity towards Drug Site 2 (DS2) compared to Drug Site 1 (DS1).</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the molecular interaction between apraclonidine, an α2-adrenergic receptor agonist, and bovine serum albumin using fluorescence and molecular docking techniques\",\"authors\":\"Ipek Kucuk , Öykü Buket Küçükşahin , Merve Yildirim , Md. Zahirul Kabir , Hülya Silah , Ismail Celik , Bengi Uslu\",\"doi\":\"10.1016/j.saa.2024.125246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Apraclonidine (APR) is a potent and selective α2-adrenergic receptor agonist used in the diagnosis of Horner’s Syndrome, and the residuals of APR that accumulate in tissues of animals can cause central nervous and cardiovascular systems influences in humans. Therefore, to understand the influence of APR on human health, we examined the interaction of APR with the carrier protein in plasma, bovine serum albumin (BSA). The BSA fluorescence signal was quenched due to the APU–BSA complex formation and a weak binding affinity was estimated between APR and BSA. The inclusion of fluorescence, UV–vis absorption, molecular docking, and dynamics simulation techniques employed to broadly investigate the combination of APR with BSA at typical physiological conditions. The thermodynamic results revealed that enthalpy (ΔH<sup>0</sup>) and entropy (ΔS<sup>0</sup>) changes were computed as +11.14 kJ mol<sup>−1</sup> and +97.56 J mol<sup>−1</sup> K<sup>−1</sup>, respectively, which represented the binding is principally entropy-driven and the hydrophobic forces acting a significant role in the reaction. Analysis of synchronous and 3-D fluorescence signals revealed microenvironmental variations close to BSA’s Trp and Tyr residues upon APR addition. Both the competitive site marker as well as molecular docking results detected that APR exhibited a stronger binding affinity towards Drug Site 2 (DS2) compared to Drug Site 1 (DS1).</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524014124\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524014124","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Investigation of the molecular interaction between apraclonidine, an α2-adrenergic receptor agonist, and bovine serum albumin using fluorescence and molecular docking techniques
Apraclonidine (APR) is a potent and selective α2-adrenergic receptor agonist used in the diagnosis of Horner’s Syndrome, and the residuals of APR that accumulate in tissues of animals can cause central nervous and cardiovascular systems influences in humans. Therefore, to understand the influence of APR on human health, we examined the interaction of APR with the carrier protein in plasma, bovine serum albumin (BSA). The BSA fluorescence signal was quenched due to the APU–BSA complex formation and a weak binding affinity was estimated between APR and BSA. The inclusion of fluorescence, UV–vis absorption, molecular docking, and dynamics simulation techniques employed to broadly investigate the combination of APR with BSA at typical physiological conditions. The thermodynamic results revealed that enthalpy (ΔH0) and entropy (ΔS0) changes were computed as +11.14 kJ mol−1 and +97.56 J mol−1 K−1, respectively, which represented the binding is principally entropy-driven and the hydrophobic forces acting a significant role in the reaction. Analysis of synchronous and 3-D fluorescence signals revealed microenvironmental variations close to BSA’s Trp and Tyr residues upon APR addition. Both the competitive site marker as well as molecular docking results detected that APR exhibited a stronger binding affinity towards Drug Site 2 (DS2) compared to Drug Site 1 (DS1).
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.