{"title":"基于 Stackelberg 博弈的海上风电场集群输电系统拓扑优化","authors":"Siyu Tao, Fuqing Jiang","doi":"10.1016/j.segan.2024.101542","DOIUrl":null,"url":null,"abstract":"<div><div>Offshore wind energy is pivotal in the global energy transition, with a global installed capacity reaching 64.3 GW by 2022 and an expected annual increase of 60.2 GW over the next decade. This study aims to optimize the topology of transmission systems (TS) for offshore wind farm (OWF) clusters using Stackelberg game theory. The OWF investor (OWFI) acts as the leader, optimizing investment returns while considering wake effects, and the offshore TS operator (OTSO) follows by adjusting transmission strategies to reduce costs. The analysis includes the wake effects within OWF clusters and their impact on power generation efficiency. Simulation results demonstrate that the proposed model can balance stakeholder interests and enhance the economic viability of OWF clusters, showing a potential increase in net present value (NPV) by up to 30 %. This study validates the practical application of the Stackelberg game model in optimizing OWF cluster TS topology, contributing to more efficient and cost-effective renewable energy integration.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"40 ","pages":"Article 101542"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of offshore wind farm cluster transmission system topology based on Stackelberg game\",\"authors\":\"Siyu Tao, Fuqing Jiang\",\"doi\":\"10.1016/j.segan.2024.101542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Offshore wind energy is pivotal in the global energy transition, with a global installed capacity reaching 64.3 GW by 2022 and an expected annual increase of 60.2 GW over the next decade. This study aims to optimize the topology of transmission systems (TS) for offshore wind farm (OWF) clusters using Stackelberg game theory. The OWF investor (OWFI) acts as the leader, optimizing investment returns while considering wake effects, and the offshore TS operator (OTSO) follows by adjusting transmission strategies to reduce costs. The analysis includes the wake effects within OWF clusters and their impact on power generation efficiency. Simulation results demonstrate that the proposed model can balance stakeholder interests and enhance the economic viability of OWF clusters, showing a potential increase in net present value (NPV) by up to 30 %. This study validates the practical application of the Stackelberg game model in optimizing OWF cluster TS topology, contributing to more efficient and cost-effective renewable energy integration.</div></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":\"40 \",\"pages\":\"Article 101542\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467724002716\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002716","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimization of offshore wind farm cluster transmission system topology based on Stackelberg game
Offshore wind energy is pivotal in the global energy transition, with a global installed capacity reaching 64.3 GW by 2022 and an expected annual increase of 60.2 GW over the next decade. This study aims to optimize the topology of transmission systems (TS) for offshore wind farm (OWF) clusters using Stackelberg game theory. The OWF investor (OWFI) acts as the leader, optimizing investment returns while considering wake effects, and the offshore TS operator (OTSO) follows by adjusting transmission strategies to reduce costs. The analysis includes the wake effects within OWF clusters and their impact on power generation efficiency. Simulation results demonstrate that the proposed model can balance stakeholder interests and enhance the economic viability of OWF clusters, showing a potential increase in net present value (NPV) by up to 30 %. This study validates the practical application of the Stackelberg game model in optimizing OWF cluster TS topology, contributing to more efficient and cost-effective renewable energy integration.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.