单细胞水平的人类衰老调查

IF 12.5 1区 医学 Q1 CELL BIOLOGY Ageing Research Reviews Pub Date : 2024-10-10 DOI:10.1016/j.arr.2024.102530
Yunjin Li , Qixia Wang , Yuan Xuan , Jian Zhao , Jin Li , Yuncai Tian , Geng Chen , Fei Tan
{"title":"单细胞水平的人类衰老调查","authors":"Yunjin Li ,&nbsp;Qixia Wang ,&nbsp;Yuan Xuan ,&nbsp;Jian Zhao ,&nbsp;Jin Li ,&nbsp;Yuncai Tian ,&nbsp;Geng Chen ,&nbsp;Fei Tan","doi":"10.1016/j.arr.2024.102530","DOIUrl":null,"url":null,"abstract":"<div><div>Human aging is characterized by a gradual decline in physiological functions and an increased susceptibility to various diseases. The complex mechanisms underlying human aging are still not fully elucidated. Single-cell sequencing (SCS) technologies have revolutionized aging research by providing unprecedented resolution and detailed insights into cellular diversity and dynamics. In this review, we discuss the application of various SCS technologies in human aging research, encompassing single-cell, genomics, transcriptomics, epigenomics, and proteomics. We also discuss the combination of multiple omics layers within single cells and the integration of SCS technologies with advanced methodologies like spatial transcriptomics and mass spectrometry. These approaches have been essential in identifying aging biomarkers, elucidating signaling pathways associated with aging, discovering novel aging cell subpopulations, uncovering tissue-specific aging characteristics, and investigating aging-related diseases. Furthermore, we provide an overview of aging-related databases that offer valuable resources for enhancing our understanding of the human aging process.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"101 ","pages":"Article 102530"},"PeriodicalIF":12.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of human aging at the single-cell level\",\"authors\":\"Yunjin Li ,&nbsp;Qixia Wang ,&nbsp;Yuan Xuan ,&nbsp;Jian Zhao ,&nbsp;Jin Li ,&nbsp;Yuncai Tian ,&nbsp;Geng Chen ,&nbsp;Fei Tan\",\"doi\":\"10.1016/j.arr.2024.102530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human aging is characterized by a gradual decline in physiological functions and an increased susceptibility to various diseases. The complex mechanisms underlying human aging are still not fully elucidated. Single-cell sequencing (SCS) technologies have revolutionized aging research by providing unprecedented resolution and detailed insights into cellular diversity and dynamics. In this review, we discuss the application of various SCS technologies in human aging research, encompassing single-cell, genomics, transcriptomics, epigenomics, and proteomics. We also discuss the combination of multiple omics layers within single cells and the integration of SCS technologies with advanced methodologies like spatial transcriptomics and mass spectrometry. These approaches have been essential in identifying aging biomarkers, elucidating signaling pathways associated with aging, discovering novel aging cell subpopulations, uncovering tissue-specific aging characteristics, and investigating aging-related diseases. Furthermore, we provide an overview of aging-related databases that offer valuable resources for enhancing our understanding of the human aging process.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"101 \",\"pages\":\"Article 102530\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163724003489\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724003489","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类衰老的特点是生理功能逐渐衰退,对各种疾病的易感性增加。人类衰老的复杂机制仍未完全阐明。单细胞测序(SCS)技术通过提供前所未有的分辨率和对细胞多样性和动态的详细了解,彻底改变了衰老研究。在这篇综述中,我们讨论了各种单细胞测序技术在人类衰老研究中的应用,包括单细胞、基因组学、转录组学、表观基因组学和蛋白质组学。我们还讨论了单细胞内多个 omics 层的组合,以及 SCS 技术与空间转录组学和质谱分析等先进方法的整合。这些方法对于确定衰老生物标志物、阐明与衰老相关的信号通路、发现新型衰老细胞亚群、揭示组织特异性衰老特征以及研究衰老相关疾病至关重要。此外,我们还概述了与衰老相关的数据库,这些数据库为加深我们对人类衰老过程的了解提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of human aging at the single-cell level
Human aging is characterized by a gradual decline in physiological functions and an increased susceptibility to various diseases. The complex mechanisms underlying human aging are still not fully elucidated. Single-cell sequencing (SCS) technologies have revolutionized aging research by providing unprecedented resolution and detailed insights into cellular diversity and dynamics. In this review, we discuss the application of various SCS technologies in human aging research, encompassing single-cell, genomics, transcriptomics, epigenomics, and proteomics. We also discuss the combination of multiple omics layers within single cells and the integration of SCS technologies with advanced methodologies like spatial transcriptomics and mass spectrometry. These approaches have been essential in identifying aging biomarkers, elucidating signaling pathways associated with aging, discovering novel aging cell subpopulations, uncovering tissue-specific aging characteristics, and investigating aging-related diseases. Furthermore, we provide an overview of aging-related databases that offer valuable resources for enhancing our understanding of the human aging process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ageing Research Reviews
Ageing Research Reviews 医学-老年医学
CiteScore
19.80
自引率
2.30%
发文量
216
审稿时长
55 days
期刊介绍: With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends. ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research. The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.
期刊最新文献
Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer’s disease: A narrative review Progress in the mechanisms of pain associated with neurodegenerative diseases Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions Priorities in tackling noncommunicable diseases among the population aged 60 years and older in China, 1990–2021: A population-based study Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1