基于智能神经元的卡洛三混合纳米流体模型解释与流线分析:不同几何形状的配置

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-10-17 DOI:10.1016/j.jrras.2024.101154
Basma Souayeh , Ali Haider , Assad Ayub , Maryam Sulaiman Albely , Hamiden Abd El-Wahed Khalifa , H. Fayaz
{"title":"基于智能神经元的卡洛三混合纳米流体模型解释与流线分析:不同几何形状的配置","authors":"Basma Souayeh ,&nbsp;Ali Haider ,&nbsp;Assad Ayub ,&nbsp;Maryam Sulaiman Albely ,&nbsp;Hamiden Abd El-Wahed Khalifa ,&nbsp;H. Fayaz","doi":"10.1016/j.jrras.2024.101154","DOIUrl":null,"url":null,"abstract":"<div><div>This current attempt develops a more efficient predictive model that can accurately simulate the behavior of Carreau trihybrid nanofluids in non-trivial configurations. This study interprets thermal behavior of Carreau trihybrid nanofluid model with streamline analysis considering the two geometries wedge and cone. Three nanoparticles are involved in base fluid (water) with physical effects of non-uniform heat sink source and nonlinear thermal radiation are assumed for heat transport and Lorentz forces are considered for velocity inspection. Furthermore, this study employs intelligent neural networks to interpret data for streamline and thermal transport analysis, focusing on the specific cases of wedge and cone geometries. Initial data fetched through bvp4c and further, obtained data trained through supervised neural scheme, Levenberg marquardt neural network (LM-NN) is applied and required predictions are made. Higher “Gc” indicates stronger solutal buoyancy forces, which promote upward fluid movement, thereby increasing the velocity gradient. With increasing (M), the velocity profile decreases. Fluid exhibits enhancing the velocity gradient with higher (n). Higher particle concentration enhances the fluid's viscosity and resistance.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101154"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent neuron based interpretation of carreau trihybrid nanofluid model with streamline analysis: Configuration of distinct geometries\",\"authors\":\"Basma Souayeh ,&nbsp;Ali Haider ,&nbsp;Assad Ayub ,&nbsp;Maryam Sulaiman Albely ,&nbsp;Hamiden Abd El-Wahed Khalifa ,&nbsp;H. Fayaz\",\"doi\":\"10.1016/j.jrras.2024.101154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This current attempt develops a more efficient predictive model that can accurately simulate the behavior of Carreau trihybrid nanofluids in non-trivial configurations. This study interprets thermal behavior of Carreau trihybrid nanofluid model with streamline analysis considering the two geometries wedge and cone. Three nanoparticles are involved in base fluid (water) with physical effects of non-uniform heat sink source and nonlinear thermal radiation are assumed for heat transport and Lorentz forces are considered for velocity inspection. Furthermore, this study employs intelligent neural networks to interpret data for streamline and thermal transport analysis, focusing on the specific cases of wedge and cone geometries. Initial data fetched through bvp4c and further, obtained data trained through supervised neural scheme, Levenberg marquardt neural network (LM-NN) is applied and required predictions are made. Higher “Gc” indicates stronger solutal buoyancy forces, which promote upward fluid movement, thereby increasing the velocity gradient. With increasing (M), the velocity profile decreases. Fluid exhibits enhancing the velocity gradient with higher (n). Higher particle concentration enhances the fluid's viscosity and resistance.</div></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"17 4\",\"pages\":\"Article 101154\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687850724003388\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724003388","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前的尝试是开发一种更有效的预测模型,可以准确模拟非三维配置中的 Carreau 三混合纳米流体的行为。考虑到楔形和锥形两种几何形状,本研究通过流线分析解释了 Carreau 三混合纳米流体模型的热行为。基础流体(水)中包含三个纳米粒子,热传输假定采用非均匀散热源和非线性热辐射的物理效应,速度检测则考虑洛伦兹力。此外,本研究还采用了智能神经网络来解释流线和热传输分析数据,重点关注楔形和锥形几何形状的特殊情况。通过 bvp4c 获取初始数据,然后通过监督神经方案、Levenberg marquardt 神经网络(LM-NN)对所获数据进行训练,并做出所需的预测。较高的 "Gc "表示较强的溶质浮力,可促进流体向上运动,从而增加速度梯度。随着(M)的增大,速度曲线会减小。随着(n)的增加,流体的速度梯度增大。颗粒浓度越高,流体的粘度和阻力越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent neuron based interpretation of carreau trihybrid nanofluid model with streamline analysis: Configuration of distinct geometries
This current attempt develops a more efficient predictive model that can accurately simulate the behavior of Carreau trihybrid nanofluids in non-trivial configurations. This study interprets thermal behavior of Carreau trihybrid nanofluid model with streamline analysis considering the two geometries wedge and cone. Three nanoparticles are involved in base fluid (water) with physical effects of non-uniform heat sink source and nonlinear thermal radiation are assumed for heat transport and Lorentz forces are considered for velocity inspection. Furthermore, this study employs intelligent neural networks to interpret data for streamline and thermal transport analysis, focusing on the specific cases of wedge and cone geometries. Initial data fetched through bvp4c and further, obtained data trained through supervised neural scheme, Levenberg marquardt neural network (LM-NN) is applied and required predictions are made. Higher “Gc” indicates stronger solutal buoyancy forces, which promote upward fluid movement, thereby increasing the velocity gradient. With increasing (M), the velocity profile decreases. Fluid exhibits enhancing the velocity gradient with higher (n). Higher particle concentration enhances the fluid's viscosity and resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
The impact of radiologists’ characteristics on the detection of COVID-19 in chest CT scans Effects of thermal radiation on TiO2-Cu/water hybrid nanofluid: A finite difference discretization Coronary computed tomographic angiography predicts crossing through chronic total occlusion within three guidewires Detection of clavicle fracture after martial arts training based on 3D segmentation and multi-perspective fusion Application of ultrasonic imaging technology in beef cattle breeding management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1