{"title":"平台无关的深度强化学习框架,实现自动驾驶的有效 Sim2Real 转移","authors":"Dianzhao Li, Ostap Okhrin","doi":"10.1038/s44172-024-00292-3","DOIUrl":null,"url":null,"abstract":"Autonomous driving presents unique challenges, particularly in transferring agents trained in simulation to real-world environments due to the discrepancies between the two. To address this issue, here we propose a robust Deep Reinforcement Learning (DRL) framework that incorporates platform-dependent perception modules to extract task-relevant information, enabling the training of a lane-following and overtaking agent in simulation. This framework facilitates the efficient transfer of the DRL agent to new simulated environments and the real world with minimal adjustments. We assess the performance of the agent across various driving scenarios in both simulation and the real world, comparing it to human drivers and a proportional-integral-derivative (PID) baseline in simulation. Additionally, we contrast it with other DRL baselines to clarify the rationale behind choosing this framework. Our proposed approach helps bridge the gaps between different platforms and the Simulation to Reality (Sim2Real) gap, allowing the trained agent to perform consistently in both simulation and real-world scenarios, effectively driving the vehicle. Dianzhao Li and Ostap Okhrin proposed a deep reinforcement learning framework for transition between various simulated and real-world driving environments. Their method allows for the more effective control of autonomous vehicles in lane following and overtaking tasks.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00292-3.pdf","citationCount":"0","resultStr":"{\"title\":\"A platform-agnostic deep reinforcement learning framework for effective Sim2Real transfer towards autonomous driving\",\"authors\":\"Dianzhao Li, Ostap Okhrin\",\"doi\":\"10.1038/s44172-024-00292-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving presents unique challenges, particularly in transferring agents trained in simulation to real-world environments due to the discrepancies between the two. To address this issue, here we propose a robust Deep Reinforcement Learning (DRL) framework that incorporates platform-dependent perception modules to extract task-relevant information, enabling the training of a lane-following and overtaking agent in simulation. This framework facilitates the efficient transfer of the DRL agent to new simulated environments and the real world with minimal adjustments. We assess the performance of the agent across various driving scenarios in both simulation and the real world, comparing it to human drivers and a proportional-integral-derivative (PID) baseline in simulation. Additionally, we contrast it with other DRL baselines to clarify the rationale behind choosing this framework. Our proposed approach helps bridge the gaps between different platforms and the Simulation to Reality (Sim2Real) gap, allowing the trained agent to perform consistently in both simulation and real-world scenarios, effectively driving the vehicle. Dianzhao Li and Ostap Okhrin proposed a deep reinforcement learning framework for transition between various simulated and real-world driving environments. Their method allows for the more effective control of autonomous vehicles in lane following and overtaking tasks.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00292-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00292-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00292-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A platform-agnostic deep reinforcement learning framework for effective Sim2Real transfer towards autonomous driving
Autonomous driving presents unique challenges, particularly in transferring agents trained in simulation to real-world environments due to the discrepancies between the two. To address this issue, here we propose a robust Deep Reinforcement Learning (DRL) framework that incorporates platform-dependent perception modules to extract task-relevant information, enabling the training of a lane-following and overtaking agent in simulation. This framework facilitates the efficient transfer of the DRL agent to new simulated environments and the real world with minimal adjustments. We assess the performance of the agent across various driving scenarios in both simulation and the real world, comparing it to human drivers and a proportional-integral-derivative (PID) baseline in simulation. Additionally, we contrast it with other DRL baselines to clarify the rationale behind choosing this framework. Our proposed approach helps bridge the gaps between different platforms and the Simulation to Reality (Sim2Real) gap, allowing the trained agent to perform consistently in both simulation and real-world scenarios, effectively driving the vehicle. Dianzhao Li and Ostap Okhrin proposed a deep reinforcement learning framework for transition between various simulated and real-world driving environments. Their method allows for the more effective control of autonomous vehicles in lane following and overtaking tasks.