在减数分裂过程中,FIGL1 会减弱减数分裂同源染色体间的修复,并被 RAD51 旁系亲属 XRCC2 和染色体轴蛋白 ASY1 所抵消

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-10-17 DOI:10.1111/nph.20181
Côme Emmenecker, Simine Pakzad, Fatou Ture, Julie Guerin, Aurélie Hurel, Aurélie Chambon, Chloé Girard, Raphael Mercier, Rajeev Kumar
{"title":"在减数分裂过程中,FIGL1 会减弱减数分裂同源染色体间的修复,并被 RAD51 旁系亲属 XRCC2 和染色体轴蛋白 ASY1 所抵消","authors":"Côme Emmenecker, Simine Pakzad, Fatou Ture, Julie Guerin, Aurélie Hurel, Aurélie Chambon, Chloé Girard, Raphael Mercier, Rajeev Kumar","doi":"10.1111/nph.20181","DOIUrl":null,"url":null,"abstract":"<h2> Introduction</h2>\n<p>During meiosis, the repair of DNA double-stranded breaks (DSBs) by homologous recombination (HR) yields crossovers (COs) and noncrossovers (NCOs) (Hunter, <span>2015</span>; Wang &amp; Copenhaver, <span>2018</span>). Meiotic COs between homologous chromosomes (interhomolog) rather than between sister chromatids (intersister) serve important mechanical and evolutionary roles (Schwacha &amp; Kleckner, <span>1994</span>, <span>1997</span>). The choice of the sister or nonsister chromatid template for repair is thus a key determinant for the outcome of meiotic recombination.</p>\n<p>DNA strand exchange recombinases are central in regulating the choice of DNA template for DSB repair (Brown &amp; Bishop, <span>2014</span>; Humphryes &amp; Hochwagen, <span>2014</span>). RAD51 and DMC1 recombinases are two eukaryotic RecA homologs and can assemble into nucleofilaments on single-stranded DNA (ssDNA) generated from the processing of DSBs (Sheridan <i>et al</i>., <span>2008</span>; Brown &amp; Bishop, <span>2014</span>). Both recombinases can perform homology searches of the genome and strand invasion on the donor template during meiosis. Cytologically, RAD51 and DMC1 form nuclear foci on meiotic chromosomes (Bishop, <span>1994</span>; Kurzbauer <i>et al</i>., <span>2012</span>; Brown <i>et al</i>., <span>2015</span>; Slotman <i>et al</i>., <span>2020</span>). Studies in many species contend that meiotic break repair occurs in two temporally distinct phases: a DMC1-permissive phase (Phase 1) followed by a RAD51-permissive phase (Phase 2) (Hayashi <i>et al</i>., <span>2007</span>; Kim <i>et al</i>., <span>2010</span>; Crismani <i>et al</i>., <span>2013</span>; Enguita-Marruedo <i>et al</i>., <span>2019</span>; Toraason <i>et al</i>., <span>2021</span>; Ziesel <i>et al</i>., <span>2022</span>). In the DMC1-permissive phase, DMC1 predominantly repairs DSBs and catalyzes interhomolog recombination, whereas RAD51 is kept catalytically inactive (Tsubouchi &amp; Roeder, <span>2006</span>; Busygina <i>et al</i>., <span>2008</span>; Niu <i>et al</i>., <span>2009</span>; Lao <i>et al</i>., <span>2013</span>; Callender <i>et al</i>., <span>2016</span>). In the RAD51-permissive phase, the RAD51-mediated pathway becomes active to repair remaining DSBs, mainly using sister chromatids (Crismani <i>et al</i>., <span>2013</span>; Enguita-Marruedo <i>et al</i>., <span>2019</span>; Toraason <i>et al</i>., <span>2021</span>; Ziesel <i>et al</i>., <span>2022</span>). The RAD51-dependent pathway also repairs DSB on sisters before meiotic entry (Joshi <i>et al</i>., <span>2015</span>).</p>\n<p>During Phase 1, different RAD51-inhibiting strategies appear to have evolved in eukaryotic species. The Mek1-mediated pathway downregulates Rad51-dependent repair in budding yeast (Niu <i>et al</i>., <span>2009</span>; Callender <i>et al</i>., <span>2016</span>). This regulation is, however, not conserved in plants, because RAD51 can repair breaks in the absence of DMC1, albeit using sister chromatids inferred from a lack of interhomolog COs (Couteau <i>et al</i>., <span>1999</span>; Wang <i>et al</i>., <span>2016</span>). The mere presence of DMC1 attenuates RAD51 repair in yeast and Arabidopsis (Lao <i>et al</i>., <span>2013</span>; Da Ines <i>et al</i>., <span>2022</span>). Constitutive activation of Rad51, in addition to active Dmc1, elicits a longer repair time in yeast (Ziesel <i>et al</i>., <span>2022</span>). Wild-type (WT) DMC1-mediated interhomolog recombination nonetheless requires the presence of RAD51, but not its catalytic activity (Cloud <i>et al</i>., <span>2012</span>; Da Ines <i>et al</i>., <span>2013b</span>). In Arabidopsis, RAD51 fused to GFP at its C-terminus (RAD51-GFP) is catalytically inactive and unable to repair breaks in mitotic and meiotic cells but supports DMC1-mediated repair during meiosis (Da Ines <i>et al</i>., <span>2013b</span>). This function suggests that the catalytic activity of RAD51 is nonessential for DMC1-mediated repair in plants.</p>\n<p><i>In vivo</i> functions of DMC1 and RAD51 require many accessory proteins in eukaryotes. In plants, BRCA2 mediates the formation of RAD51 and DMC1 foci, whereas SDS is specifically required for DMC1 focus formation (Azumi, <span>2002</span>; Seeliger <i>et al</i>., <span>2012</span>; Fu <i>et al</i>., <span>2020</span>). These mediators appear to act <i>in vivo</i> at the nucleofilament formation step. Further, MND1 and HOP2 are two evolutionarily conserved proteins required for the DNA exchange activity of DMC1 in plants (Petukhova <i>et al</i>., <span>2005</span>; Chan <i>et al</i>., <span>2014</span>; Uanschou <i>et al</i>., <span>2014</span>). In <i>mnd1</i> and <i>hop2</i>, DMC1 hyperaccumulation inhibits meiotic DSB repair in Arabidopsis (Kerzendorfer <i>et al</i>., <span>2006</span>; Panoli <i>et al</i>., <span>2006</span>; Vignard <i>et al</i>., <span>2007</span>; Stronghill <i>et al</i>., <span>2010</span>; Farahani-Tafreshi <i>et al</i>., <span>2022</span>). However, weak DMC1 activity in the Arabidopsis <i>hop2-2</i> hypomorphic mutant greatly compromises interhomolog repair and allows RAD51-dependent DSB repair on sisters (Uanschou <i>et al</i>., <span>2014</span>). RAD54 is also required for RAD51 functions but is unnecessary for meiotic DSB repair in the presence of DMC1 in Arabidopsis (Hernandez Sanchez-Rebato <i>et al</i>., <span>2021</span>). Further, Arabidopsis has five structurally related RAD51 paralogs: RAD51C, XRCC3, RAD51D, RAD51B, and XRCC2 (Bleuyard <i>et al</i>., <span>2005</span>). These paralogs can form a tetrameric complex called the BCDX2 complex (Osakabe <i>et al</i>., <span>2002</span>). Arabidopsis RAD51C and XRCC3 are essential for RAD51 focus formation and meiotic repair (Bleuyard &amp; White, <span>2004</span>; Abe <i>et al</i>., <span>2005</span>; Vignard <i>et al</i>., <span>2007</span>), but RAD51B, RAD51D, and XRCC2 play no critical role in RAD51-dependent meiotic DSB repair, irrespective of the presence or absence of DMC1 (Bleuyard <i>et al</i>., <span>2005</span>; Hernandez Sanchez-Rebato <i>et al</i>., <span>2021</span>). However, the loss of Arabidopsis RAD51B and XRCC2 slightly increases the meiotic recombination rate, implying their as yet unascertained roles in meiotic repair (Da Ines <i>et al</i>., <span>2013a</span>).</p>\n<p>Meiotic chromosome axis proteins ensure DSB repair and CO formation between homologs in a process called interhomolog bias (Morgan <i>et al</i>., <span>2023</span>). Arabidopsis ASY1, ASY3, and ASY4 are three meiotic axis-associated proteins that promote synapsis, a process allowing tethering between homologs through polymerization of synaptonemal complex (SC) proteins such as ZYP1 (Caryl <i>et al</i>., <span>2000</span>; Armstrong <i>et al</i>., <span>2002</span>; Higgins <i>et al</i>., <span>2005</span>; Sanchez-Moran <i>et al</i>., <span>2007</span>; Ferdous <i>et al</i>., <span>2012</span>; Chambon <i>et al</i>., <span>2018</span>; Vrielynck <i>et al</i>., <span>2023</span>). ASY1 localizes on the meiotic axis in an ASY3-dependent manner and is depleted from synapsed regions, following SC assembly between homologs (Ferdous <i>et al</i>., <span>2012</span>). Loss of ASY1, ASY3, and ASY4 results in a substantial reduction in interhomolog COs, albeit at different magnitudes, with meiotic DSBs predominantly repaired on sisters. ASY1 is required for DMC1 stabilization, suggesting a functional relationship between the meiotic axis and repair machinery (Sanchez-Moran <i>et al</i>., <span>2007</span>). How meiotic chromosome axis proteins promote DSB repair between homologs is currently unclear.</p>\n<p>Most eukaryotes have two classes of COs formed between homologs. In Arabidopsis, class I constitutes a significant proportion (85–90%) of COs, mediated by the ZMM group of proteins (SHOC1, PTD, HEI10, ZIP4, MSH4/5, and MER3) and MLH1/3 (Mercier <i>et al</i>., <span>2015</span>). The class I CO pathway ensures the obligate CO between homologs but is sensitive to CO inference that avoids the formation of additional class I COs in close proximity (Wang <i>et al</i>., <span>2015</span>; Lloyd, <span>2023</span>). Class II COs are derived from the structure-specific endonuclease-dependent pathway, including MUS81 (Berchowitz <i>et al</i>., <span>2007</span>; Wang &amp; Copenhaver, <span>2018</span>). Three nonredundant anti-class II CO pathways involving FANCM, RECQ4A &amp; RECQ4B, and FIDGETIN-LIKE-1 (FIGL1) limit meiotic COs through distinct mechanisms (Crismani <i>et al</i>., <span>2012</span>; Girard <i>et al</i>., <span>2014</span>, <span>2015</span>; Séguéla-Arnaud <i>et al</i>., <span>2015</span>, <span>2017</span>; Fernandes <i>et al</i>., <span>2018a</span>). Although these three pathways regulate class II COs, FIGL1 can also control the distribution of class I COs among chromosomes (Fernandes <i>et al</i>., <span>2018a</span>; Li <i>et al</i>., <span>2021</span>). Arabidopsis mutants lacking FIGL1 show a moderate increase in COs with occasional achiasmatic chromosomes (Girard <i>et al</i>., <span>2015</span>; Fernandes <i>et al</i>., <span>2018a</span>).</p>\n<p>FIGL1 is a member of the AAA-ATPase family and has enigmatic roles in positively and negatively regulating meiotic CO formation. Arabidopsis and wheat FIGL1 limit class II COs potentially by preventing aberrant recombination intermediates or chromosome associations (Girard <i>et al</i>., <span>2015</span>; Fernandes <i>et al</i>., <span>2018a</span>; Kumar <i>et al</i>., <span>2019</span>; Osman <i>et al</i>., <span>2024</span>). FIGL1 and its mammalian ortholog FIGNL1 physically interact with the two recombinases and can antagonize positive mediators of RAD51/DMC1, such as BRCA2 and SDS in Arabidopsis or SWSAP1 in humans (Girard <i>et al</i>., <span>2015</span>; Fernandes <i>et al</i>., <span>2018a</span>; Kumar <i>et al</i>., <span>2019</span>; Matsuzaki <i>et al</i>., <span>2019</span>). Surprisingly, maize FIGL1 can act cooperatively with BRCA2 to positively regulate meiotic recombination (T. Zhang <i>et al</i>., <span>2023</span>). <i>Arabidopsis figl1</i>, rice <i>figl1</i>, and mice <i>fignl1</i><sup><i>cko</i></sup> mutants show a change in the dynamics of RAD51 and DMC1 foci, leading to the deregulation of strand invasion, which supports a conserved role of FIGL1/FIGNL1 in meiotic DSB repair (Zhang <i>et al</i>., <span>2017</span>; Fernandes <i>et al</i>., <span>2018a</span>; Yang <i>et al</i>., <span>2022</span>; Ito <i>et al</i>., <span>2023</span>; Q. Zhang <i>et al</i>., <span>2023</span>). FIGNL1 is also involved in DSB repair via homologous recombination in somatic cells (Yuan &amp; Chen, <span>2013</span>; Matsuzaki <i>et al</i>., <span>2019</span>). FIGL1/FIGNL1 is thus a conserved regulator of RAD51- and DMC1-mediated strand invasion and may function in the fine-tuned regulation of the strand invasion step to promote accurate meiotic DSB repair. How FIGL1 regulates the outcome of meiotic break repair when RAD51- and/or DMC1-dependent pathways are fully or partially impaired remains unknown. In this study, we investigated the impact of the functional relationship of <i>FIGL1</i> with components of HR repair machinery and chromosome axis genes on the outcome of meiotic DSB repair. We demonstrate that these genetic interactions are an essential determinant of meiotic break repair outcomes.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"79 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIGL1 attenuates meiotic interhomolog repair and is counteracted by the RAD51 paralog XRCC2 and the chromosome axis protein ASY1 during meiosis\",\"authors\":\"Côme Emmenecker, Simine Pakzad, Fatou Ture, Julie Guerin, Aurélie Hurel, Aurélie Chambon, Chloé Girard, Raphael Mercier, Rajeev Kumar\",\"doi\":\"10.1111/nph.20181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h2> Introduction</h2>\\n<p>During meiosis, the repair of DNA double-stranded breaks (DSBs) by homologous recombination (HR) yields crossovers (COs) and noncrossovers (NCOs) (Hunter, <span>2015</span>; Wang &amp; Copenhaver, <span>2018</span>). Meiotic COs between homologous chromosomes (interhomolog) rather than between sister chromatids (intersister) serve important mechanical and evolutionary roles (Schwacha &amp; Kleckner, <span>1994</span>, <span>1997</span>). The choice of the sister or nonsister chromatid template for repair is thus a key determinant for the outcome of meiotic recombination.</p>\\n<p>DNA strand exchange recombinases are central in regulating the choice of DNA template for DSB repair (Brown &amp; Bishop, <span>2014</span>; Humphryes &amp; Hochwagen, <span>2014</span>). RAD51 and DMC1 recombinases are two eukaryotic RecA homologs and can assemble into nucleofilaments on single-stranded DNA (ssDNA) generated from the processing of DSBs (Sheridan <i>et al</i>., <span>2008</span>; Brown &amp; Bishop, <span>2014</span>). Both recombinases can perform homology searches of the genome and strand invasion on the donor template during meiosis. Cytologically, RAD51 and DMC1 form nuclear foci on meiotic chromosomes (Bishop, <span>1994</span>; Kurzbauer <i>et al</i>., <span>2012</span>; Brown <i>et al</i>., <span>2015</span>; Slotman <i>et al</i>., <span>2020</span>). Studies in many species contend that meiotic break repair occurs in two temporally distinct phases: a DMC1-permissive phase (Phase 1) followed by a RAD51-permissive phase (Phase 2) (Hayashi <i>et al</i>., <span>2007</span>; Kim <i>et al</i>., <span>2010</span>; Crismani <i>et al</i>., <span>2013</span>; Enguita-Marruedo <i>et al</i>., <span>2019</span>; Toraason <i>et al</i>., <span>2021</span>; Ziesel <i>et al</i>., <span>2022</span>). In the DMC1-permissive phase, DMC1 predominantly repairs DSBs and catalyzes interhomolog recombination, whereas RAD51 is kept catalytically inactive (Tsubouchi &amp; Roeder, <span>2006</span>; Busygina <i>et al</i>., <span>2008</span>; Niu <i>et al</i>., <span>2009</span>; Lao <i>et al</i>., <span>2013</span>; Callender <i>et al</i>., <span>2016</span>). In the RAD51-permissive phase, the RAD51-mediated pathway becomes active to repair remaining DSBs, mainly using sister chromatids (Crismani <i>et al</i>., <span>2013</span>; Enguita-Marruedo <i>et al</i>., <span>2019</span>; Toraason <i>et al</i>., <span>2021</span>; Ziesel <i>et al</i>., <span>2022</span>). The RAD51-dependent pathway also repairs DSB on sisters before meiotic entry (Joshi <i>et al</i>., <span>2015</span>).</p>\\n<p>During Phase 1, different RAD51-inhibiting strategies appear to have evolved in eukaryotic species. The Mek1-mediated pathway downregulates Rad51-dependent repair in budding yeast (Niu <i>et al</i>., <span>2009</span>; Callender <i>et al</i>., <span>2016</span>). This regulation is, however, not conserved in plants, because RAD51 can repair breaks in the absence of DMC1, albeit using sister chromatids inferred from a lack of interhomolog COs (Couteau <i>et al</i>., <span>1999</span>; Wang <i>et al</i>., <span>2016</span>). The mere presence of DMC1 attenuates RAD51 repair in yeast and Arabidopsis (Lao <i>et al</i>., <span>2013</span>; Da Ines <i>et al</i>., <span>2022</span>). Constitutive activation of Rad51, in addition to active Dmc1, elicits a longer repair time in yeast (Ziesel <i>et al</i>., <span>2022</span>). Wild-type (WT) DMC1-mediated interhomolog recombination nonetheless requires the presence of RAD51, but not its catalytic activity (Cloud <i>et al</i>., <span>2012</span>; Da Ines <i>et al</i>., <span>2013b</span>). In Arabidopsis, RAD51 fused to GFP at its C-terminus (RAD51-GFP) is catalytically inactive and unable to repair breaks in mitotic and meiotic cells but supports DMC1-mediated repair during meiosis (Da Ines <i>et al</i>., <span>2013b</span>). This function suggests that the catalytic activity of RAD51 is nonessential for DMC1-mediated repair in plants.</p>\\n<p><i>In vivo</i> functions of DMC1 and RAD51 require many accessory proteins in eukaryotes. In plants, BRCA2 mediates the formation of RAD51 and DMC1 foci, whereas SDS is specifically required for DMC1 focus formation (Azumi, <span>2002</span>; Seeliger <i>et al</i>., <span>2012</span>; Fu <i>et al</i>., <span>2020</span>). These mediators appear to act <i>in vivo</i> at the nucleofilament formation step. Further, MND1 and HOP2 are two evolutionarily conserved proteins required for the DNA exchange activity of DMC1 in plants (Petukhova <i>et al</i>., <span>2005</span>; Chan <i>et al</i>., <span>2014</span>; Uanschou <i>et al</i>., <span>2014</span>). In <i>mnd1</i> and <i>hop2</i>, DMC1 hyperaccumulation inhibits meiotic DSB repair in Arabidopsis (Kerzendorfer <i>et al</i>., <span>2006</span>; Panoli <i>et al</i>., <span>2006</span>; Vignard <i>et al</i>., <span>2007</span>; Stronghill <i>et al</i>., <span>2010</span>; Farahani-Tafreshi <i>et al</i>., <span>2022</span>). However, weak DMC1 activity in the Arabidopsis <i>hop2-2</i> hypomorphic mutant greatly compromises interhomolog repair and allows RAD51-dependent DSB repair on sisters (Uanschou <i>et al</i>., <span>2014</span>). RAD54 is also required for RAD51 functions but is unnecessary for meiotic DSB repair in the presence of DMC1 in Arabidopsis (Hernandez Sanchez-Rebato <i>et al</i>., <span>2021</span>). Further, Arabidopsis has five structurally related RAD51 paralogs: RAD51C, XRCC3, RAD51D, RAD51B, and XRCC2 (Bleuyard <i>et al</i>., <span>2005</span>). These paralogs can form a tetrameric complex called the BCDX2 complex (Osakabe <i>et al</i>., <span>2002</span>). Arabidopsis RAD51C and XRCC3 are essential for RAD51 focus formation and meiotic repair (Bleuyard &amp; White, <span>2004</span>; Abe <i>et al</i>., <span>2005</span>; Vignard <i>et al</i>., <span>2007</span>), but RAD51B, RAD51D, and XRCC2 play no critical role in RAD51-dependent meiotic DSB repair, irrespective of the presence or absence of DMC1 (Bleuyard <i>et al</i>., <span>2005</span>; Hernandez Sanchez-Rebato <i>et al</i>., <span>2021</span>). However, the loss of Arabidopsis RAD51B and XRCC2 slightly increases the meiotic recombination rate, implying their as yet unascertained roles in meiotic repair (Da Ines <i>et al</i>., <span>2013a</span>).</p>\\n<p>Meiotic chromosome axis proteins ensure DSB repair and CO formation between homologs in a process called interhomolog bias (Morgan <i>et al</i>., <span>2023</span>). Arabidopsis ASY1, ASY3, and ASY4 are three meiotic axis-associated proteins that promote synapsis, a process allowing tethering between homologs through polymerization of synaptonemal complex (SC) proteins such as ZYP1 (Caryl <i>et al</i>., <span>2000</span>; Armstrong <i>et al</i>., <span>2002</span>; Higgins <i>et al</i>., <span>2005</span>; Sanchez-Moran <i>et al</i>., <span>2007</span>; Ferdous <i>et al</i>., <span>2012</span>; Chambon <i>et al</i>., <span>2018</span>; Vrielynck <i>et al</i>., <span>2023</span>). ASY1 localizes on the meiotic axis in an ASY3-dependent manner and is depleted from synapsed regions, following SC assembly between homologs (Ferdous <i>et al</i>., <span>2012</span>). Loss of ASY1, ASY3, and ASY4 results in a substantial reduction in interhomolog COs, albeit at different magnitudes, with meiotic DSBs predominantly repaired on sisters. ASY1 is required for DMC1 stabilization, suggesting a functional relationship between the meiotic axis and repair machinery (Sanchez-Moran <i>et al</i>., <span>2007</span>). How meiotic chromosome axis proteins promote DSB repair between homologs is currently unclear.</p>\\n<p>Most eukaryotes have two classes of COs formed between homologs. In Arabidopsis, class I constitutes a significant proportion (85–90%) of COs, mediated by the ZMM group of proteins (SHOC1, PTD, HEI10, ZIP4, MSH4/5, and MER3) and MLH1/3 (Mercier <i>et al</i>., <span>2015</span>). The class I CO pathway ensures the obligate CO between homologs but is sensitive to CO inference that avoids the formation of additional class I COs in close proximity (Wang <i>et al</i>., <span>2015</span>; Lloyd, <span>2023</span>). Class II COs are derived from the structure-specific endonuclease-dependent pathway, including MUS81 (Berchowitz <i>et al</i>., <span>2007</span>; Wang &amp; Copenhaver, <span>2018</span>). Three nonredundant anti-class II CO pathways involving FANCM, RECQ4A &amp; RECQ4B, and FIDGETIN-LIKE-1 (FIGL1) limit meiotic COs through distinct mechanisms (Crismani <i>et al</i>., <span>2012</span>; Girard <i>et al</i>., <span>2014</span>, <span>2015</span>; Séguéla-Arnaud <i>et al</i>., <span>2015</span>, <span>2017</span>; Fernandes <i>et al</i>., <span>2018a</span>). Although these three pathways regulate class II COs, FIGL1 can also control the distribution of class I COs among chromosomes (Fernandes <i>et al</i>., <span>2018a</span>; Li <i>et al</i>., <span>2021</span>). Arabidopsis mutants lacking FIGL1 show a moderate increase in COs with occasional achiasmatic chromosomes (Girard <i>et al</i>., <span>2015</span>; Fernandes <i>et al</i>., <span>2018a</span>).</p>\\n<p>FIGL1 is a member of the AAA-ATPase family and has enigmatic roles in positively and negatively regulating meiotic CO formation. Arabidopsis and wheat FIGL1 limit class II COs potentially by preventing aberrant recombination intermediates or chromosome associations (Girard <i>et al</i>., <span>2015</span>; Fernandes <i>et al</i>., <span>2018a</span>; Kumar <i>et al</i>., <span>2019</span>; Osman <i>et al</i>., <span>2024</span>). FIGL1 and its mammalian ortholog FIGNL1 physically interact with the two recombinases and can antagonize positive mediators of RAD51/DMC1, such as BRCA2 and SDS in Arabidopsis or SWSAP1 in humans (Girard <i>et al</i>., <span>2015</span>; Fernandes <i>et al</i>., <span>2018a</span>; Kumar <i>et al</i>., <span>2019</span>; Matsuzaki <i>et al</i>., <span>2019</span>). Surprisingly, maize FIGL1 can act cooperatively with BRCA2 to positively regulate meiotic recombination (T. Zhang <i>et al</i>., <span>2023</span>). <i>Arabidopsis figl1</i>, rice <i>figl1</i>, and mice <i>fignl1</i><sup><i>cko</i></sup> mutants show a change in the dynamics of RAD51 and DMC1 foci, leading to the deregulation of strand invasion, which supports a conserved role of FIGL1/FIGNL1 in meiotic DSB repair (Zhang <i>et al</i>., <span>2017</span>; Fernandes <i>et al</i>., <span>2018a</span>; Yang <i>et al</i>., <span>2022</span>; Ito <i>et al</i>., <span>2023</span>; Q. Zhang <i>et al</i>., <span>2023</span>). FIGNL1 is also involved in DSB repair via homologous recombination in somatic cells (Yuan &amp; Chen, <span>2013</span>; Matsuzaki <i>et al</i>., <span>2019</span>). FIGL1/FIGNL1 is thus a conserved regulator of RAD51- and DMC1-mediated strand invasion and may function in the fine-tuned regulation of the strand invasion step to promote accurate meiotic DSB repair. How FIGL1 regulates the outcome of meiotic break repair when RAD51- and/or DMC1-dependent pathways are fully or partially impaired remains unknown. In this study, we investigated the impact of the functional relationship of <i>FIGL1</i> with components of HR repair machinery and chromosome axis genes on the outcome of meiotic DSB repair. We demonstrate that these genetic interactions are an essential determinant of meiotic break repair outcomes.</p>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20181\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20181","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

引言 在减数分裂过程中,同源重组(HR)对DNA双链断裂(DSB)的修复会产生交叉(CO)和非交叉(NCO)(Hunter,2015;Wang &amp; Copenhaver,2018)。同源染色体之间(同源染色体间)而非姐妹染色单体之间(姐妹染色单体间)的减数分裂交叉互换具有重要的机械和进化作用(Schwacha &amp; Kleckner,1994,1997)。因此,选择姐妹染色单体或非姐妹染色单体模板进行修复是决定减数分裂重组结果的关键因素。DNA链交换重组酶在调节DSB修复的DNA模板选择方面起着核心作用(Brown &amp; Bishop, 2014; Humphryes &amp; Hochwagen, 2014)。RAD51 和 DMC1 重组酶是两种真核生物 RecA 的同源物,能在处理 DSB 时产生的单链 DNA(ssDNA)上组装成核丝(Sheridan 等人,2008 年;Brown &amp; Bishop,2014 年)。这两种重组酶都能在减数分裂过程中对基因组进行同源搜索,并在供体模板上进行链侵袭。在细胞学上,RAD51 和 DMC1 在减数分裂染色体上形成核病灶(Bishop,1994 年;Kurzbauer 等人,2012 年;Brown 等人,2015 年;Slotman 等人,2020 年)。对许多物种的研究认为,减数分裂断裂修复发生在两个时间上截然不同的阶段:DMC1-允许阶段(第 1 阶段)和 RAD51-允许阶段(第 2 阶段)(Hayashi 等人,2007 年;Kim 等人,2010 年;Crismani 等人,2013 年;Enguita-Marruedo 等人,2019 年;Toraason 等人,2021 年;Ziesel 等人,2022 年)。在DMC1允许阶段,DMC1主要修复DSB并催化同源重组,而RAD51则保持催化不活跃(Tsubouchi &amp; Roeder, 2006; Busygina et al.)在 RAD51 允许阶段,RAD51 介导的途径变得活跃,主要利用姐妹染色单体修复剩余的 DSB(Crismani 等人,2013 年;Enguita-Marruedo 等人,2019 年;Toraason 等人,2021 年;Ziesel 等人,2022 年)。在第一阶段,真核物种中似乎进化出了不同的 RAD51 抑制策略。在芽殖酵母中,Mek1 介导的途径会下调 Rad51 依赖性修复(Niu 等人,2009 年;Callender 等人,2016 年)。然而,这种调控在植物中并不保守,因为 RAD51 可以在没有 DMC1 的情况下修复断裂,尽管是利用缺乏同源染色体间 CO 的姐妹染色单体进行修复(Couteau 等人,1999 年;Wang 等人,2016 年)。在酵母和拟南芥中,仅 DMC1 的存在就会削弱 RAD51 的修复(Lao 等人,2013 年;Da Ines 等人,2022 年)。在酵母中,除了活性 Dmc1 外,Rad51 的持续激活也会延长修复时间(Ziesel 等人,2022 年)。野生型(WT)DMC1 介导的同源重组仍然需要 RAD51 的存在,但不需要其催化活性(Cloud 等人,2012;Da Ines 等人,2013b)。在拟南芥中,RAD51 的 C 端融合了 GFP(RAD51-GFP),它没有催化活性,不能修复有丝分裂和减数分裂细胞中的断裂,但在减数分裂过程中支持 DMC1 介导的修复(Da Ines 等人,2013b)。这一功能表明,在植物中,RAD51 的催化活性对 DMC1 介导的修复并不重要。在真核生物中,DMC1 和 RAD51 的体内功能需要许多辅助蛋白。在植物中,BRCA2 介导 RAD51 和 DMC1 病灶的形成,而 SDS 则是 DMC1 病灶形成所必需的(Azumi,2002 年;Seeliger 等人,2012 年;Fu 等人,2020 年)。这些介质似乎在体内核丝形成步骤中起作用。此外,MND1 和 HOP2 是植物中 DMC1 DNA 交换活性所需的两个进化保守蛋白(Petukhova 等人,2005 年;Chan 等人,2014 年;Uanschou 等人,2014 年)。在 mnd1 和 hop2 中,DMC1 的过度积累会抑制拟南芥减数分裂的 DSB 修复(Kerzendorfer 等人,2006 年;Panoli 等人,2006 年;Vignard 等人,2007 年;Stronghill 等人,2010 年;Farahani-Tafreshi 等人,2022 年)。然而,拟南芥hop2-2低常突变体中微弱的DMC1活性极大地损害了同源体间修复,并使RAD51依赖的DSB修复得以在姐妹花上进行(Uanschou等人,2014年)。RAD54 也需要 RAD51 的功能,但在拟南芥中,DMC1 存在时,RAD54 对减数分裂的 DSB 修复是不必要的(Hernandez Sanchez-Rebato 等,2021 年)。此外,拟南芥有五个结构上相关的 RAD51 准同源物:RAD51C、XRCC3、RAD51D、RAD51B 和 XRCC2(Bleuyard 等人,2005 年)。这些旁系亲属可以形成一个四聚体复合物,称为 BCDX2 复合物(Osakabe 等人,2002 年)。拟南芥的 RAD51C 和 XRCC3 对 RAD51 病灶形成和减数分裂修复至关重要(Bleuyard &amp; White, 2004; Abe et al. 然而,拟南芥 RAD51B 和 XRCC2 的缺失会略微增加减数分裂重组率,这意味着它们在减数分裂修复中的作用尚未确定(Da Ines 等人,2013a)。减数分裂染色体轴蛋白可确保同源物之间的 DSB 修复和 CO 形成,这一过程被称为同源物间偏向(Morgan 等人,2023 年)。拟南芥的 ASY1、ASY3 和 ASY4 是三种与减数分裂轴相关的蛋白,它们能促进突触,这一过程通过 ZYP1 等突触复合体(SC)蛋白的聚合实现同源物之间的拴系(Caryl et al、2000;Armstrong 等人,2002;Higgins 等人,2005;Sanchez-Moran 等人,2007;Ferdous 等人,2012;Chambon 等人,2018;Vrielynck 等人,2023)。ASY1 以一种依赖 ASY3 的方式定位在减数分裂轴上,并在同源物之间的 SC 组装后从突触区耗尽(Ferdous 等人,2012 年)。ASY1、ASY3 和 ASY4 的缺失会导致同源体间 CO 的大量减少,尽管减少的程度不同,但减数分裂的 DSB 主要在姐妹上修复。DMC1的稳定需要ASY1,这表明减数分裂轴与修复机制之间存在功能关系(Sanchez-Moran等人,2007年)。目前还不清楚减数分裂染色体轴蛋白如何促进同源物之间的 DSB 修复。在拟南芥中,I 类 CO 占 CO 的很大比例(85-90%),由 ZMM 蛋白组(SHOC1、PTD、HEI10、ZIP4、MSH4/5 和 MER3)和 MLH1/3 介导(Mercier 等人,2015 年)。I 类 CO 途径可确保同源物之间的强制性 CO,但对 CO 推断很敏感,可避免在近距离内形成额外的 I 类 CO(Wang 等人,2015 年;Lloyd,2023 年)。II 类 CO 来源于结构特异性内切酶依赖途径,包括 MUS81(Berchowitz 等,2007;Wang &amp; Copenhaver,2018)。涉及 FANCM、RECQ4A &amp; RECQ4B 和 FIDGETIN-LIKE-1 (FIGL1)的三种非冗余反 II 类 CO 途径通过不同的机制限制减数分裂 CO(Crismani 等人,2012;Girard 等人,2014,2015;Séguéla-Arnaud 等人,2015,2017;Fernandes 等人,2018a)。虽然这三种途径都能调节 II 类 COs,但 FIGL1 也能控制 I 类 COs 在染色体上的分布(Fernandes 等,2018a;Li 等,2021)。缺乏 FIGL1 的拟南芥突变体显示出 COs 的中度增加,偶有无节染色体(Girard 等人,2015 年;Fernandes 等人,2018a)。FIGL1 是 AAA-ATPase 家族的成员,在正负调控减数分裂 CO 形成方面具有神秘的作用。拟南芥和小麦的 FIGL1 可能通过防止异常重组中间体或染色体联合来限制 II 类 CO(Girard 等人,2015 年;Fernandes 等人,2018a;Kumar 等人,2019 年;Osman 等人,2024 年)。FIGL1 及其哺乳动物直向同源物 FIGNL1 与这两种重组酶发生物理相互作用,并能拮抗 RAD51/DMC1 的正向介导因子,如拟南芥中的 BRCA2 和 SDS 或人类中的 SWSAP1(Girard 等,2015;Fernandes 等,2018a;Kumar 等,2019;Matsuzaki 等,2019)。令人惊讶的是,玉米 FIGL1 可以与 BRCA2 合作,对减数分裂重组起到积极的调节作用(T. Zhang 等人,2023 年)。拟南芥figl1、水稻figl1和小鼠fignl1cko突变体显示出RAD51和DMC1病灶的动态变化,导致链侵入的失调,这支持了FIGL1/FIGNL1在减数分裂DSB修复中的保守作用(Zhang等人,2017;Fernandes等人,2018a;Yang等人,2022;Ito等人,2023;Q. Zhang等人,2023)。FIGNL1 还参与体细胞中通过同源重组进行的 DSB 修复(Yuan &amp; Chen, 2013; Matsuzaki et al.)因此,FIGL1/FIGNL1是RAD51和DMC1介导的链侵袭的保守调节因子,可能在链侵袭步骤的微调调节中发挥作用,以促进减数分裂DSB的准确修复。当 RAD51 和/或 DMC1 依赖性途径完全或部分受损时,FIGL1 如何调节减数分裂断裂修复的结果仍是未知数。在本研究中,我们研究了 FIGL1 与 HR 修复机制和染色体轴基因的功能关系对减数分裂 DSB 修复结果的影响。我们证明了这些基因相互作用是减数分裂断裂修复结果的重要决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FIGL1 attenuates meiotic interhomolog repair and is counteracted by the RAD51 paralog XRCC2 and the chromosome axis protein ASY1 during meiosis

Introduction

During meiosis, the repair of DNA double-stranded breaks (DSBs) by homologous recombination (HR) yields crossovers (COs) and noncrossovers (NCOs) (Hunter, 2015; Wang & Copenhaver, 2018). Meiotic COs between homologous chromosomes (interhomolog) rather than between sister chromatids (intersister) serve important mechanical and evolutionary roles (Schwacha & Kleckner, 1994, 1997). The choice of the sister or nonsister chromatid template for repair is thus a key determinant for the outcome of meiotic recombination.

DNA strand exchange recombinases are central in regulating the choice of DNA template for DSB repair (Brown & Bishop, 2014; Humphryes & Hochwagen, 2014). RAD51 and DMC1 recombinases are two eukaryotic RecA homologs and can assemble into nucleofilaments on single-stranded DNA (ssDNA) generated from the processing of DSBs (Sheridan et al., 2008; Brown & Bishop, 2014). Both recombinases can perform homology searches of the genome and strand invasion on the donor template during meiosis. Cytologically, RAD51 and DMC1 form nuclear foci on meiotic chromosomes (Bishop, 1994; Kurzbauer et al., 2012; Brown et al., 2015; Slotman et al., 2020). Studies in many species contend that meiotic break repair occurs in two temporally distinct phases: a DMC1-permissive phase (Phase 1) followed by a RAD51-permissive phase (Phase 2) (Hayashi et al., 2007; Kim et al., 2010; Crismani et al., 2013; Enguita-Marruedo et al., 2019; Toraason et al., 2021; Ziesel et al., 2022). In the DMC1-permissive phase, DMC1 predominantly repairs DSBs and catalyzes interhomolog recombination, whereas RAD51 is kept catalytically inactive (Tsubouchi & Roeder, 2006; Busygina et al., 2008; Niu et al., 2009; Lao et al., 2013; Callender et al., 2016). In the RAD51-permissive phase, the RAD51-mediated pathway becomes active to repair remaining DSBs, mainly using sister chromatids (Crismani et al., 2013; Enguita-Marruedo et al., 2019; Toraason et al., 2021; Ziesel et al., 2022). The RAD51-dependent pathway also repairs DSB on sisters before meiotic entry (Joshi et al., 2015).

During Phase 1, different RAD51-inhibiting strategies appear to have evolved in eukaryotic species. The Mek1-mediated pathway downregulates Rad51-dependent repair in budding yeast (Niu et al., 2009; Callender et al., 2016). This regulation is, however, not conserved in plants, because RAD51 can repair breaks in the absence of DMC1, albeit using sister chromatids inferred from a lack of interhomolog COs (Couteau et al., 1999; Wang et al., 2016). The mere presence of DMC1 attenuates RAD51 repair in yeast and Arabidopsis (Lao et al., 2013; Da Ines et al., 2022). Constitutive activation of Rad51, in addition to active Dmc1, elicits a longer repair time in yeast (Ziesel et al., 2022). Wild-type (WT) DMC1-mediated interhomolog recombination nonetheless requires the presence of RAD51, but not its catalytic activity (Cloud et al., 2012; Da Ines et al., 2013b). In Arabidopsis, RAD51 fused to GFP at its C-terminus (RAD51-GFP) is catalytically inactive and unable to repair breaks in mitotic and meiotic cells but supports DMC1-mediated repair during meiosis (Da Ines et al., 2013b). This function suggests that the catalytic activity of RAD51 is nonessential for DMC1-mediated repair in plants.

In vivo functions of DMC1 and RAD51 require many accessory proteins in eukaryotes. In plants, BRCA2 mediates the formation of RAD51 and DMC1 foci, whereas SDS is specifically required for DMC1 focus formation (Azumi, 2002; Seeliger et al., 2012; Fu et al., 2020). These mediators appear to act in vivo at the nucleofilament formation step. Further, MND1 and HOP2 are two evolutionarily conserved proteins required for the DNA exchange activity of DMC1 in plants (Petukhova et al., 2005; Chan et al., 2014; Uanschou et al., 2014). In mnd1 and hop2, DMC1 hyperaccumulation inhibits meiotic DSB repair in Arabidopsis (Kerzendorfer et al., 2006; Panoli et al., 2006; Vignard et al., 2007; Stronghill et al., 2010; Farahani-Tafreshi et al., 2022). However, weak DMC1 activity in the Arabidopsis hop2-2 hypomorphic mutant greatly compromises interhomolog repair and allows RAD51-dependent DSB repair on sisters (Uanschou et al., 2014). RAD54 is also required for RAD51 functions but is unnecessary for meiotic DSB repair in the presence of DMC1 in Arabidopsis (Hernandez Sanchez-Rebato et al., 2021). Further, Arabidopsis has five structurally related RAD51 paralogs: RAD51C, XRCC3, RAD51D, RAD51B, and XRCC2 (Bleuyard et al., 2005). These paralogs can form a tetrameric complex called the BCDX2 complex (Osakabe et al., 2002). Arabidopsis RAD51C and XRCC3 are essential for RAD51 focus formation and meiotic repair (Bleuyard & White, 2004; Abe et al., 2005; Vignard et al., 2007), but RAD51B, RAD51D, and XRCC2 play no critical role in RAD51-dependent meiotic DSB repair, irrespective of the presence or absence of DMC1 (Bleuyard et al., 2005; Hernandez Sanchez-Rebato et al., 2021). However, the loss of Arabidopsis RAD51B and XRCC2 slightly increases the meiotic recombination rate, implying their as yet unascertained roles in meiotic repair (Da Ines et al., 2013a).

Meiotic chromosome axis proteins ensure DSB repair and CO formation between homologs in a process called interhomolog bias (Morgan et al., 2023). Arabidopsis ASY1, ASY3, and ASY4 are three meiotic axis-associated proteins that promote synapsis, a process allowing tethering between homologs through polymerization of synaptonemal complex (SC) proteins such as ZYP1 (Caryl et al., 2000; Armstrong et al., 2002; Higgins et al., 2005; Sanchez-Moran et al., 2007; Ferdous et al., 2012; Chambon et al., 2018; Vrielynck et al., 2023). ASY1 localizes on the meiotic axis in an ASY3-dependent manner and is depleted from synapsed regions, following SC assembly between homologs (Ferdous et al., 2012). Loss of ASY1, ASY3, and ASY4 results in a substantial reduction in interhomolog COs, albeit at different magnitudes, with meiotic DSBs predominantly repaired on sisters. ASY1 is required for DMC1 stabilization, suggesting a functional relationship between the meiotic axis and repair machinery (Sanchez-Moran et al., 2007). How meiotic chromosome axis proteins promote DSB repair between homologs is currently unclear.

Most eukaryotes have two classes of COs formed between homologs. In Arabidopsis, class I constitutes a significant proportion (85–90%) of COs, mediated by the ZMM group of proteins (SHOC1, PTD, HEI10, ZIP4, MSH4/5, and MER3) and MLH1/3 (Mercier et al., 2015). The class I CO pathway ensures the obligate CO between homologs but is sensitive to CO inference that avoids the formation of additional class I COs in close proximity (Wang et al., 2015; Lloyd, 2023). Class II COs are derived from the structure-specific endonuclease-dependent pathway, including MUS81 (Berchowitz et al., 2007; Wang & Copenhaver, 2018). Three nonredundant anti-class II CO pathways involving FANCM, RECQ4A & RECQ4B, and FIDGETIN-LIKE-1 (FIGL1) limit meiotic COs through distinct mechanisms (Crismani et al., 2012; Girard et al., 2014, 2015; Séguéla-Arnaud et al., 2015, 2017; Fernandes et al., 2018a). Although these three pathways regulate class II COs, FIGL1 can also control the distribution of class I COs among chromosomes (Fernandes et al., 2018a; Li et al., 2021). Arabidopsis mutants lacking FIGL1 show a moderate increase in COs with occasional achiasmatic chromosomes (Girard et al., 2015; Fernandes et al., 2018a).

FIGL1 is a member of the AAA-ATPase family and has enigmatic roles in positively and negatively regulating meiotic CO formation. Arabidopsis and wheat FIGL1 limit class II COs potentially by preventing aberrant recombination intermediates or chromosome associations (Girard et al., 2015; Fernandes et al., 2018a; Kumar et al., 2019; Osman et al., 2024). FIGL1 and its mammalian ortholog FIGNL1 physically interact with the two recombinases and can antagonize positive mediators of RAD51/DMC1, such as BRCA2 and SDS in Arabidopsis or SWSAP1 in humans (Girard et al., 2015; Fernandes et al., 2018a; Kumar et al., 2019; Matsuzaki et al., 2019). Surprisingly, maize FIGL1 can act cooperatively with BRCA2 to positively regulate meiotic recombination (T. Zhang et al., 2023). Arabidopsis figl1, rice figl1, and mice fignl1cko mutants show a change in the dynamics of RAD51 and DMC1 foci, leading to the deregulation of strand invasion, which supports a conserved role of FIGL1/FIGNL1 in meiotic DSB repair (Zhang et al., 2017; Fernandes et al., 2018a; Yang et al., 2022; Ito et al., 2023; Q. Zhang et al., 2023). FIGNL1 is also involved in DSB repair via homologous recombination in somatic cells (Yuan & Chen, 2013; Matsuzaki et al., 2019). FIGL1/FIGNL1 is thus a conserved regulator of RAD51- and DMC1-mediated strand invasion and may function in the fine-tuned regulation of the strand invasion step to promote accurate meiotic DSB repair. How FIGL1 regulates the outcome of meiotic break repair when RAD51- and/or DMC1-dependent pathways are fully or partially impaired remains unknown. In this study, we investigated the impact of the functional relationship of FIGL1 with components of HR repair machinery and chromosome axis genes on the outcome of meiotic DSB repair. We demonstrate that these genetic interactions are an essential determinant of meiotic break repair outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Meta-analysis reveals globally sourced commercial mycorrhizal inoculants fall short Trade-offs involved in the choice of pot vs field experiments Herbicidal interference: glyphosate drives both the ecology and evolution of plant–herbivore interactions Matthew Naish A nuclear phylogenomic tree of grasses (Poaceae) recovers current classification despite gene tree incongruence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1